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Abstract

In this paper we introduce a new class of binary matrices whose entries show pe-
riodical configurations, and we furnish a first approach to their analysis from a
tomographical point of view. In particular we propose a polynomial-time algorithm
for reconstructing matrices with a special periodical behavior from their horizontal
and vertical projections. We succeeded in our aim by using a reduction involving
polyominoes which can be characterized by means of 2− SAT formulas.

Key words: Discrete tomography, Computational complexity, Polyomino,
2− SAT reduction.

1 Introduction

The present paper studies the possibility of determining some geometrical as-
pects of a discrete physical structure whose interior is accessible only through
a small number of measurements of the atoms lying along a fixed set of di-
rections. This is the central theme of discrete tomography and the principal
motivation of this study is in the attempt to reconstruct three-dimensional
crystals from two-dimensional images taken by a transmission electron micro-
scope. The quantitative analysis of these images can be used to determine the
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number of atoms lying in atomic lines along certain directions [14]. The ques-
tion is to deduce the local atomic structure of the crystal from the atomic line
count data. The goal is to use the reconstruction technique for quality control
in VLSI (Very Large Scale Integration) technology. Before showing the results
of this paper, we give a brief survey of the relevant contributions in discrete
tomography.

Clearly, the best known and most important part of the general area of tomog-
raphy is computerized tomography, an invaluable tool in medical diagnosis and
many other areas including biology, chemistry and material science. Comput-
erized tomography is the process of obtaining the density distribution within
a physical structure from multiple X-rays. More formally, we attempt to re-
construct a density function f(x) for x in R2 or R3, from the knowledge of
its line integrals Xf (L) =

∫
L f(x)dx for each line L through the space. A line

integral is the X-ray of f(x) along L. The mapping f → Xf is known as the
Radon transform. The mathematics of computerized tomography is quite well
understood. Appropriate quadratures [18] of the Radon inversion formula are
used, with concepts from calculus and continuous mathematics playing the
main role.

Discrete tomography is the area of computerized tomography which deals
with discrete physical structures. These structures are usually homogeneous
or present a small number of density values. Furthermore, there are strong
technical reasons why very few X-rays can be sent through them. Discrete
tomography has its own mathematical theory mostly based on discrete math-
ematics. It has some strong connection with combinatorics and geometry. We
wish to point out that the mathematical techniques developed in discrete
tomography have applications in other fields such as: image processing, statis-
tical data security, biplane angiography, graph theory and so on. As a survey
of the state of the art of discrete tomography we can suggest the book [13].

Interestingly, mathematicians have been concerned with abstract formulations
of these problems before the emergence of the practical applications. Many
problems of discrete tomography were first discussed as combinatorial prob-
lems during the late 1950s and early 1960s. In 1957 Ryser [17] and Gale [11]
gave a necessary and sufficient condition for a pair of vectors being the discrete
X-rays of an homogeneous planar physical structure, represented by a binary
matrix, along the horizontal and vertical directions. The discrete X-rays in
horizontal and vertical directions are equal to the row and column sums of
the matrix. They gave an exact combinatorial characterization of the row and
column sums that correspond to a binary matrix, and they derived an O(nm)-
time algorithm for reconstructing a matrix, with n and m denoting its sizes.
We refer the reader to an excellent survey on binary matrices with given row
and column sums by Brualdi [7].
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In most practical applications we can use some a priori information about
geometrical aspects of the image that we want to reconstruct, in order to
guide the reconstruction process to a more accurate output. We can think to
these a priori information in terms of subclasses of binary images to which
the solution must belong. For instance, several papers study the reconstruc-
tion problem of binary images having convexity or connectivity properties, in
particular there is a uniqueness result [12] for the subclass of convex binary
matrices, (i.e. finite subsets of Zn which are coincident with their convex hull).
It is proved that a convex binary matrix is uniquely determined by its discrete
X-rays in certain prescribed sets of four directions or in any seven non-parallel
coplanar directions. Moreover, there are efficient algorithms for reconstructing
binary matrices belonging to classes of subsets of Z2 characterized by means of
convexity or connectivity properties, from their discrete X-rays. In particular
we refer to the class of hv-convex polyominoes [3,9,4] (i.e., two-dimensional bi-
nary matrices which are 4-connected and convex in the horizontal and vertical
directions) and to the class of convex binary matrices [5,6].

In this paper, we propose some new classes of binary matrices showing pe-
riodicity properties. The periodicity is a natural constraint, and it has not
yet been studied in discrete tomography. We provide a polynomial-time al-
gorithm for reconstructing (1, q) periodical binary matrices whose horizontal
and vertical projections, i.e. row and column sums, are “not too far” (in a
sense explained later) from two given integer sequences. The reconstruction
becomes exact when the periodicity is (1, 1). The basic idea of the algorithm
is to determine a polynomial transformation of our reconstruction problem to
2-Satisfiability problem which can be solved in linear time [2]. A similar idea
has been described and successfully applied in [3,8]. We wish to point out
that this paper is only an initial approach to the problem of reconstructing
binary matrices having periodicity properties from a small number of discrete
X-rays. There are many open problems on these classes of binary matrices of
interest to researchers in discrete tomography and related fields: the problem
of uniqueness, the problem of reconstruction from three or more X-rays, the
problem of reconstructing binary matrices having convexity and periodicity
properties, and so on.

2 Definitions and preliminaries

Let A be a m×n binary matrix, we choose to enumerate its rows and columns
starting from row 1 and column 1 which intersect in its upper left position.
For each 1 ≤ i ≤ m and 1 ≤ j ≤ n, let ri =

∑n
j=1 ai,j and cj =

∑m
i=1 ai,j. We

define R = (r1, . . . , rm) and C = (c1, . . . , cn) as the vectors of horizontal and
vertical projections of A, respectively. Matrix A is said to be consistent with
R and C.
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Let 0 < p < n and 0 < q < m be two integers. Matrix A is (p, q) periodical or,
equivalently, has period (p, q), if it holds:

ai,j = 1 ⇒




ai+q,j+p = 1 if 1 ≤ i + q ≤ m and 1 ≤ j + p ≤ n,

ai−q,j−p = 1 if 1 ≤ i− q ≤ m and 1 ≤ j − p ≤ n,

for each 1 ≤ i ≤ m and 1 ≤ j ≤ n (see Fig.1). In the sequel we indicate with
Per(p, q) the class of all binary matrices having period (p, q).

Remark: since, by definition, a generic matrix A belongs to all classes Per(p, q),
with p ≥ n or q ≥ m, then, in order to avoid non significative cases, we restrict
to p < n and q < m.

0 1 0 0 0 1 0 13
2
2
3
2
1
3

0 0 0 0 1 0 0 1
1 0 0 0 0 0 0 1

11 0 0 1 0 0 0
1 0 0 00 0 1 0
0 0 1 0 0 0 0 0
0 1 1 0 0 01 0

3 2 2 1 1 2 1 4

Fig. 1. A binary matrix having period (2, 3). The integers at the beginning of each
row and column correspond to its horizontal and vertical projections, respectively.
The circled entry 1 is linked, by periodicity, with the two pointed ones.

Let mod[1..n] : N→ N be the function

(x)mod[1..n] =





(x)modn if (x)modn 6= 0

n otherwise,

where (x)modn is the usual modulo function.

The concept of periodicity hides the following notion of propagation of a value
inside a matrix: for any given position (i, j) of A ∈ Per(p, q), we define set of
propagation Pi,j to be the set of all positions (i + kq, t) such that

t = (j + kp) mod[1..n], with k ∈ Z and 1 ≤ i + kq ≤ m.

Finally, we define line to be each subset `i,j of elements of A such that

- ai′,j′ ∈ `i,j if and only if (i′, j′) ∈ Pi,j;
- ai′,j′ ∈ `i,j implies ai′,j′ = 1;
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and we define length of `i,j to be its cardinality. In words, line is each set of
elements of A having value 1 and whose positions form a propagation set.

Each line `i,j has a starting point [ending point ] which is the element ai′,j′ ∈ `i,j

such that, for each ai′′,j′′ ∈ `i,j, it holds i′ ≤ i′′ [ i′ ≥ i′′ ]. Furthermore we say
that `i,j starts [ ends ] on column j′. In Fig.2, three copies of the same (1, 2)
periodical matrix are depicted: the highlighted entries

- of matrix a) correspond to the elements whose positions belong to the two
propagation sets P3,1 and P2,4;

- of matrix b) correspond to the lines `2,6 and `5,1 of lengths two and three,
respectively;

- of matrix c) correspond to the two elements a4,1 and a1,8 having value 1
and not belonging to any line.

c)

0 1 0 0 0 1
0 0 0 0

0 0 0 0 0 1
1 0 0 0
1 0 00 0 0

0 1
1 0 1 0

1
0 1 1 0
1 0

0

a)

0 1 0 0 0 1
0 0 0 0

0 0 0 0 0 1
1 0 0 0
1 0 00 0 0

0 1
1 0 1 0

1
0 1 1 0
1 0

0

b)

0 1 0 0 0 1
0 0 0 0

0 0 0 0 0 1
1 0 0 0
1 0 00 0 0

0 1
1 0 1 0

1
0 1 1 0
1 0

0

Fig. 2. Three copies of the same (1, 2) periodical matrix.

The following notion of box has maximal relevance in our framework. Let A
be a (p, q) periodical matrix: for each row i of A, the two sets of positions

(i, 1), . . . , (i, p) and (i, n− p + 1), . . . , (i, n)

are called (the i-th) left and right box of A, respectively. In the same way we
can define, for each column j of A, the positions

(1, j), . . . , (q, j) and (m− q + 1, j), . . . , (m, j)

to form (the j-th) upper and lower box of A, respectively. As a direct conse-
quence of the definition of boxes, it holds:

Proposition 1 Let us indicate with bi and bi+q the sums of the elements of the
i-th right box and of the (i+ q)-th left box of A, respectively, and, analogously,
let us indicate with bj and bj+p the sums of the elements of the j-th lower box
and of the (j + p)-th upper box of A, respectively. We have:

a) if ri + k = ri+q, with k ≥ 0, then it holds bi+q− bi = k, else, if k < 0, then
it holds bi − bi+q = k;

b) if cj + k = cj+p, with k ≥ 0, then it holds bj+p − bj = k, else, if k < 0,
then it holds bj − bj+p = k.
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In Fig. 3, it is depicted a (1, 2) periodical matrix: the highlighted positions
form eight boxes which are grouped two by two. The difference between the
sums of the elements inside each box of the same couple is different from 0, and
can be computed from the horizontal and vertical projections of the matrix,
as stated in Proposition 1.

0 0 0 0 0 0 12
4
2
5
2
5
1

0 0 1 1 0 0 1 1
1 0 0 0 0 0 0 0

11 0 0 1 1 0 0
0 0 0 0 0 0 0
0 1 0 0 1 1 0 0
0 0 1 0 0 00 0

2 2 2 2 2 1 1 3

0 10
0 0

01
1 0

1 0 1
1 1
0 0

3 3

Fig. 3. A (1, 2) periodical matrix whose highlighted positions form eight connected
boxes.

Formalization of the main problems. The given definitions allow us to specify,
inside our framework, some relevant problems of discrete tomography:

Reconstruction(Per(p, q), (R,C))

Instance: two vectors R ∈ Nm and C ∈ Nn.

Output: an element of Per(p, q), if it exists, having R and C as vectors of
horizontal and vertical projections, respectively.

This problem requires to construct an element of Per(p, q) which is consistent
with two given horizontal and vertical projections. Such a task can be easily
fulfilled by using a procedure which generates all the elements of Per(p, q) of
dimension m× n and, for each of them, checks its consistency with R and C.
This elementary procedure, however, requires an amount of time which grows
exponentially with the dimensions of R and C. In the sequel, we will focus
our attention on its following variant:

Rec-Strip(Per(p, q), (R, C))

Instance: two vectors R ∈ Nm and C ∈ Nn.

Output: an element A of Per(p, q), if it exists, having C as vertical projec-
tions and such that

kq+t∑

i=kq+1

ri =
kq+t∑

i=kq+1

n∑

j=1

ai,j and
(k+1)q∑

i=kq+t+1

ri =
(k+1)q∑

i=kq+t+1

n∑

j=1

ai,j,

for each possible integer k ≥ 0, and such that t = (m)modq.
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In other words, we search for a (p, q) periodical matrix A consistent with C,
and such that its horizontal projections are not considered one by one, but
they grouped and summed up into alternate strips of height (m)modq and
q − (m)modq.

In this paper, we will define a procedure to solve Rec-Strip(Per(1, q), (R,C))
in polynomial time.

A small remark is needed: the reconstruction of a (0, q) periodical matrix
from R and C is far from being a trivial problem. We choose to skip this
case, at least for the moment, although it might seem a more natural starting
point, since we are attracted by the connection between the reconstruction of
(1, q) periodical matrices and the reconstruction of horizontally and vertically
convex discrete sets on a torus (starting in both cases from the horizontal and
vertical projections). For, this connection, too, is non-trivial, as indicated in
the next paragraph.

Uniqueness(Per(p, q))

Instance: an element A ∈ Per(p, q).

Question: does there exist an element A′ ∈ Per(p, q), different from A, such
that A and A′ have the same horizontal and vertical projections?

The study of the conditions which assure the uniqueness of a matrix con-
sistent with a given set of projections, usually starts from an analysis of its
switching components with respect to the directions of projections (see [13]
for details and examples). In the sequel we point out simple remarks about
the uniqueness of the elements of the class Per(1, 1). A deepest analysis of
this problem together with the formalization of a switching theory for the
whole class Per(p, q) furnish material for future work. From a practical point
of view, uniqueness is a crucial property when linked to an easy algorithm of
reconstruction since the projections of the object can be used to efficiently
characterize (and so encode) the object itself.

3 A general strategy for reconstructing periodical matrices

In this section we propose a general strategy for solving the above defined
problem reconstruction problems, and then we successfully apply it to the
class Per(1, 1).

We observe that the presence inside a periodical matrix of elements which
do not belong to any line produces perturbations in its projections which
partially reveal when examining its boxes. The knowledge of these elements
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become exact when the wideness of the boxes reduces to a single position,
i.e. when one or both the components of the vector of periodicity have value
1. Furthermore, boxes provide useful information about the location of (the
starting points of) the lines inside a periodical matrix, whose total number
and lengthes can be easily inferred from the projections. Different strategies
which depend on the subclass of Per(p, q) we are dealing with, merge all
these information in order to successfully complete the reconstruction task.
Our general approach to these reconstruction problems rely on two steps: a
Preprocessing and a Lines reconstruction.

Preprocessing: it is created a partial solution to the reconstruction problem,
i.e. a m×n matrix whose elements having value 1 are those which do not belong
to any line of the final solution. These elements can be partially detected by
computing the left and right boxes of the solution, and they lie in the union
of two zones which comprehend two opposite corners of the matrix and whose
extensions depends on the vector of periodicity (the highlighted entries in
Fig.4).

0
0 0

0 0 0
1 1
0 1 0 1 1

01
0
1
0 1 1 0
0 1

1 0 0

1 0 0

0 0 1 0 1
0 0 1 1 1
0 0 1 0 0
0 1 0 0 1

0 0 0 1
0 0 1

1 0
000 1

. . .A :

Fig. 4. The two zones of the (2, 3) periodical matrix A where the entries not be-
longing to any line can lie.

In these zones, and only here, the elements of the solution may not completely
show the periodical behavior which characterizes the structure.

If we focus our attention on matrices which belong to Per(1, q), we notice that
their left and right boxes are composed by a single element. In such a case,
the preprocessing can be used to reconstruct a set of elements which are fixed,
i.e. which are common to all the solutions satisfying the given projections R
and C.

Lines reconstruction: suitable positions for the lines which belong to the
final solution are now detected. It is created a m × n matrix whose elements
having value 1 form the lines of the final solution, and it is merged with that
reconstructed in the preprocessing. In a word, it is now that the periodical
behavior of the structure realizes. Different reconstruction strategies can be
defined according to the different class of periodical structures we are dealing
with: some specific properties of the solution, in fact, could greatly simplify
this part of the reconstruction.
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In the sequel, we present a reconstruction algorithm for the class Per(1, 1)
which is useful to better understand the more complex result involving the
class Per(1, q) described in next section. The simplicity of this example, allows
both the preprocessing and the lines reconstruction to directly act and modify
the final solution A.

The reconstruction of Per(1, 1) from two projections

Let I be an instance of Reconstruction(Per(1, 1), (R, C)). We create a
m × n matrix A and we initialize its entries to the blank value. Procedure 1
performs the preprocessing part of the reconstruction after observing that both
the left and right boxes of A are composed by a single cell, and after checking
that the differences between consecutive entries of R belong to {−1, 0, 1} (if
this assumption is not satisfied, then I has no solution). Two vectors R′ and
C ′, which are initialized to the values of R and C respectively, support the
computation. In particular, they are used to store, step by step, the horizontal
and vertical projections of the entries 1 not yet placed in A.

Procedure 1 Preprocessing

for i = 1 to m− 1 do
{ Comment: search for an entry 1 in a left box}

if R′[i] + 1 == R′[i + 1] then
for j = 1 to min {m− i, n} do

A[i + j][j] = 1; R′[i + j] = R′[i + j]− 1; C ′[j] = C ′[j]− 1;
end for

end if
{ Comment: search for an entry 1 in a right box}

if R′[i] == R′[i + 1] + 1 then
for j = 1 to min {n, i} do

A[i− j + 1][n + 1− j] = 1; R′[i− j + 1] = R′[i− j + 1]− 1;
C ′[n + 1− j] = C ′[n + 1− j]− 1;

end for
i = max{i− n− 1, 0};

end if
end for

From Procedure 1, one can easy check the theorem:

Theorem 2 After performing Procedure 1:

a) the elements of A having value 1, are common to all the solutions of
instance I;

b) the partial solution A does not contain any line;

c) the vector R′ is homogeneous, i.e. all its entries have the same value.
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Another simple and useful property is

Proposition 3 After performing Procedure 1, if there exists A′ ∈ Per(1, 1)
which is consistent with R′ and C ′, then A′ is composed only by lines.

PROOF. By Theorem 2, for each 1 ≤ i0 < m, it holds r′i0 = r′i0+1, with
r′i0 =

∑n
j=1 a′i0,j and r′i0+1 =

∑n
j=1 a′i0+1,j.

Since by periodicity, a′i0,j = a′i0+1,j+1, for 1 ≤ j < n, then it holds that
a′i0,n = a′i0+1,1, and the thesis is achieved. 2

Remark: This result allows us to map matrix A′ on a cylinder (i.e. we can
consider its first and last column as contiguous ones) without loosing its peri-
odical behavior.

The part of the algorithm where lines are reconstructed is split into two pro-
cedures: a first one which places in A the lines whose positions are common to
all solutions of I (Line − rec procedure), and a second one which places the
remaining ones, if any (Loop− rec procedure). Since the procedure Line− rec
is very similar to the procedure Preprocessing, we give a brief description of
it:

Procedure 2 Line− rec

Step 1: compute the upper boxes of A using vector C ′ and, for each of them
containing an entry 1, place in A a line whose starting point is the element
inside the box. If this line intersects a previously placed entry, then return
FAILURE. Update C ′ and R′.
Step 2: compute the lower boxes of the solution using vector C ′ and, for
each of them containing an entry 1, place in A a line whose ending point is
the element inside the box. If this line intersects a previously placed entry,
then return FAILURE. Update C ′ and R′.
Step 3: repeat Step 1 and Step 2 till no upper and lower boxes are detected.

From the definition of Procedure 2, it is straightforward that

Theorem 4 After performing Procedure 1 and Procedure 2:

a) the entries of A are common to all the solutions of the instance I;

b) both R′ and C ′ are homogeneous.

We want to stress the following uniqueness result:

Corollary 5 After performing Procedure 1 and Procedure 2, if all the ele-
ments of the vector R′ have value 0, then the reconstructed solution A of I is
unique.
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The last part of our reconstruction process needs one more definition: let us
consider a generical m × n matrix B ∈ Per(1, 1) as lying on a torus (of its
same dimension), i.e. we consider its last and first row as to be consecutive,
and the same for its last and first column. A sequence `1, . . . , `k of lines of B
is called a loop if it constitutes a class modulo (1, 1) on the torus. In other
words, for each 1 ≤ i ≤ k, the ending column of `i and the starting column
of `(i+1)mod[1..k]

are consecutive in B (an example of loop are the highlighted
entries in Fig. 5, c)). Simple calculations show that the length of a loop is
l.c.m.{m,n} (the least common multiple of m and n).

Property 3.1 Let us assume that both the vectors of the horizontal and verti-
cal projections of B are homogeneous. The following statements need a simple
check:

a) B is composed only by loops;

b) the number of loops of B is m r
l.c.m.{m,n} = n c

l.c.m.{m,n} , where r (resp. c) is the

common value of its horizontal (resp. vertical) projection;

c) if we set α = l.c.m.{m,n}
m

and β = l.c.m.{m,n}
n

, i.e. the number of cells of each
loop lying on any row and on any column of B, respectively, then a necessary
and sufficient condition for B to exist is that (r)modα = (c)modβ = 0;

d) for any loop λ, if B[1][j] ∈ λ, then B[1][(j + m n
l.c.m.(m,n)

)mod[1..n]] ∈ λ.

Now we are ready to move back to our reconstruction process and complete it
by defining the procedure Loop−rec which scans A searching for free positions
where its loops, if any, can be placed, and which bases its correctness on
Property 3.1. Again, only a brief description of the procedure is given:

Procedure 3 Loop− rec

Step 1: mark with the symbol X the elements of the first row of A having
value blank, and which can not be starting points of a line, i.e.
for i = 2 to m do

if (A[i][1] == 1) & (A[1][(n− i)mod[1..n]] == blank) then
A[1][(n− i)mod[1..n]] = X

end if
end for
Step 2: place a loop inside A such that the starting points of its lines do
not intersect any element of value 1 or X, if possible, else return FAILURE;
Step 3: repeat step 2 till all the m r′

l.c.m.{m,n} loops are placed;
Step 4: the elements having values X and blank change their value to 0.

Return A.

Theorem 6 The problem Reconstruction(Per(1, 1), (R, C)) can be solved
in polynomial time.
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PROOF. Let I be an instance of Reconstruction(Per(1, 1), (R, C)). Since
Preprocessing and Line − rec reconstruct the entries which are common to
all the solutions of I, then if they give FAILURE, the vectors R and C are not
consistent. The same result holds if Loop − rec gives FAILURE, since there
are not enough free positions in A for placing the required m r′

l.c.m.{m,n} loops.
Let us analyze the complexity of the three procedures:

Preprocessing: the vector R′ of length m is scanned and, for each of its
elements, at most m − 1 entries of A are changed, with a computational
complexity of O(m min{m,n}).

Line − rec: the vector C ′ of length n is scanned at most n times and, for
each of its elements, at most one line is added to the matrix A, i.e. m of its
entries are changed. So the computational complexity is O(m n2).

Loop − rec: taking into account Property 3.1, the check for the possible
positions of a loop and its placement takes O(mn). Finally, the substitution
of the values blank with 0 takes O(m n).

So, an element of Per(1, 1) can be reconstructed in O(m n2). 2

As a direct consequence of the defined reconstruction strategy, we have the
following uniqueness result:

Corollary 7 Let R ∈ Nm and C ∈ Nn. If g.c.d.{n,m} = 1, then there is at
most one (1, 1) periodical matrix consistent with R and C.

The proof can be easily obtained by observing that either the solution has no
loops, and so it is completely reconstructed during the preprocessing and the
line reconstruction stage, or it contains one single loop, and consequently all
its entries have value 1. As an example, if R ∈ Nm and C ∈ Nm+1, then at
most one solution to Reconstruction(Per(1, 1), (R, C)) exists.

Example 8 Let us reconstruct an element of Per(1, 1) consistent with

R = (5, 5, 4, 5, 5, 6) and C = (4, 4, 4, 3, 3, 3, 3, 3, 3).

P reprocessing detects two left boxes in positions (4, 1) and (6, 1) and a right box
in positions (2, 9). For each of them, the matrix A, whose elements are here im-
mediately initialized to the value 0, is filled with entries which guarantee the (1, 1)
periodicity, as shown in Fig. 5, a). The vectors R′ and C ′ are now updated to
R′ = (4, 4, 4, 4, 4, 4) and C ′ = (2, 3, 3, 3, 3, 3, 3, 2, 2), with R′ homogeneous.

Line−rec scans vector C ′ and detects an upper box in position (1, 2), then it places
the correspondent line (Fig. 5, b)). Both the updated vectors R′ = (3, 3, 3, 3, 3, 3)
and C ′ = (2, 2, 2, 2, 2, 2, 2, 2, 2) are now homogeneous.

Loop − rec performs the last stage of the reconstruction. Since l.c.m.{6, 9} = 18,
each loop has 18

6 = 3 cells on every row, and 18
9 = 2 cells on every column. Since
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0 0 0 0 1
0 0 0 0

0 0 0 0 0 0
1 0 0 0
0 0 01 0 0

0 0
0 0 0 0

0
0 0 0 0
0 0

0

0 0
1
0

a)

0
0
000011 0 0 0

0 0 0 0 1
0 0 0

0 0 0 0 0
1 0 0 0
0 0 01 0

0 0
0 0 0 0

0
0 0 0
0 0

0

1 0
1
0

b)

0
0
00011 0 0 0

0 0 0 1
0

0 0
1 0
1 0 01 0

0
0 0 0

0
0 0 0

0
1
0

c)

0
0011 0

1
1

1
1

1

1
1

1
1

1
11

1
1

1
1

1

1
1

1
1

1
1

1
1

1
1

1

Fig. 5. The three stages of the reconstruction of a (1, 1) periodical matrix.

the entries of R′ and C ′ are consistent with these two values, the placement of the
loop goes on, after marking by X the positions (1, 5) and (1, 7). The following three
sets of positions for the starting points of the lines are considered, and one of them
is chosen:

- S1 = {(1, 1), (1, 7), (1, 4)} can not be chosen since position (1, 7) is marked;

- S2 = {(1, 2), (1, 8), (1, 5)} can not be chosen since positions (1, 2) and (1, 8) has
value 1, and, furthermore, position (1, 5) is marked;

- S3 = {(1, 3), (1, 9), (1, 6)} is chosen, and the placement of the loop is finally
performed (Fig. 5, c)).

The final solution A is achieved after replacing the entries X with the value 0. Since
only one choice is allowed for the placement of the loop, then the final solution is
unique.

4 The reconstruction of Per(1, q) with 1 < q < m

In this section we concentrate on the problem Rec-Strip(Per(1, q), (R,C)),
and we use the already introduced reconstruction strategy to solve it. We
achieve one of its solutions, say A, as the union of two matrices A′ and A′′;
this union is reached at a stage called fusion, while the two matrices are
respectively obtained in a preprocessing stage which is very similar to the one
for the class Per(1, 1), and after a complex line reconstruction stage, which
uses a reconstruction procedure for a special class of convex polyominoes. It
is now clear how such a problem can be considered as a natural extension of
the special case when m is a multiple of q. In fact, in this special case, the
problem turns out to be equivalent to the reconstruction of a matrix which is
(1, 1)-periodic, with the further assumption that each element of the matrix
contributes to the horizontal projections for a 1/q fraction.

Obviously, it holds the following, useful
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Remark: Let M be a solution of Rec-Strip. Inside the same strip of M ,
one can shift up or down an element in the same column, and then shift also
the other elements which are linked to it by periodicity, in order to get another
solution.

So, let I be an instance of Rec-Strip(Per(1, q), (R, C)), and let A′, R′ and
C ′ be chosen and initialized as in the reconstruction of an element of Per(1, 1)
from two projections, defined in the previous section.

Preprocessing

The vector R′ is again used to determine the elements which do not belong
to any line of the solution A. These points are stored in a matrix A′, whose
elements are initialized to the value blank. The preprocessing for the class
Per(1, q) can be performed by using a modified version of Procedure 1, which
takes into account the new period (1, q), and which groups together the left
[respectively, right] boxes belonging to the same strip, instead of considering
each of them separately.

To support the computation, we define the vector Sum = (s1, ..., st), which
contains the projections of the t strips of A, with t = 2dm

q
e−1. More precisely,

for each 1 ≤ i ≤ t, if i is odd, then

si = r′(d i
2
e−1)q+1 + · · ·+ r′(b i

2
c−1)q+(m)mod[1..q]

,

else, if i is even, then

si = r′(d i
2
e−1)q+(m)mod[1..q]+1 + · · ·+ r′b i

2
cq,

with the further assumption that if q divides m, then all si, with i even, are
set to 0.

Procedure 4 Preprocessing

Step 1: for i = 1 to t− 2 do
Step 1.1: if i is odd then Odd−Boxes(i) endif
Step 1.2: if i is even then Even−Boxes(i) endif
Step 1.3: complete the matrix A′ according with the (1, q) periodicity;
Step 1.4: update the vectors R′, C ′, and Sum;

Step 2: for each element A′[i][1] = 1, if 1 ≤ i′ ≤ q and the two positions
(i′, j′) and (i, 1) belong to the same propagation set, then A′[i′][j′] = X.

The procedures Odd − Boxes (described below), and Even − Boxes (which
one can easily deduce from Odd − Boxes. We skip the obvious details.) scan
the elements of Sum having odd and even indices, respectively, in order to
detect the sets of left and right boxes of the final solution A, where all the
entries not belonging to any line lie.
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Procedure 5 Odd−Boxes (i)

if si + h == si+2 & 0 < h ≤ (m)mod[1..q] then
A′[d i

2
e q + 1][1] = · · · = A′[d i

2
e q + h][1] = 1;

else if si == si+2 + h & 0 < h ≤ (m)mod[1..q] then
A′[(d i

2
e − 1) q + 1][n] = · · · = A′[(d i

2
e − 1) q + h][n] = 1;

i = max{i− n− 1, 0};
else if h > (m)mod[1..q] then

FAILURE
end if

We observe that

- in Step 2 of Preprocessing, it is required to mark with X the elements of
the first q rows of A′ which can not be starting points of lines of A (as in
Step 1 of Procedure 3);

- in the procedures Odd−boxes and Even−Boxes, one performs a consistency
check for the value of h, i.e. h ≥ 0 and h ≤ (m)mod[1..q];

- both the procedures Odd− boxes and Even−Boxes use a greedy strategy
to place the detected entries in the left and right boxes of A′.

A result similar to Theorem 2 holds:

Theorem 9 After performing the preprocessing stage

a) the matrix A′ does not contain any line;

b) for each 1 ≤ i ≤ t− 2, it holds si = si+2.

c) each solution of instance I has s1 + s2 lines at most.

Line reconstruction

The reconstruction of the matrix A′′ which contains exactly all the lines of
A, and which is one of the solutions of Rec-Strip(Per(1, q), (R′, C ′)) will be
held in the three steps hereafter summarized:

Step 1: the instance I ′ of Rec-Strip(Per(1, q), (R′, C ′)) is transformed into
an instance I ′′ of the problem of reconstructing an horizontal and vertical
convex discrete structure M lying on a torus from its vertical projections
C ′, and from the partial knowledge of its horizontal projections. We call
such a problem RecCPT(C ′, L, nL, nL+1, k), where the parameters L, nL,
nL+1, k are computed from I ′;

Step 2: the instance I ′′ is characterized by means of a boolean formula Ω
belonging to 2-SAT, and it is solved in polynomial time by using standard
techniques (see [2]);

Step 3: using the found solution of I ′′, we finally compute a solution of I ′.
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Line reconstruction, Step 1: where the reconstruction of the matrix
A′′ reduces to an instance of the problem RecCPT(C ′, L, nL, nL+1, k)

Before introducing the problem RecCPT(C ′, L, nL, nL+1, k), we point out
some properties of the matrix A′′ and we define the parameters L, nL, nL+1

and k:

Property 4.1 In the matrix A′′

a) each entry 1 belongs to a line, and each line has length L or L + 1, where
L = bm

q
c;

b) the maximum number of lines of length L + 1 which can start in the same
column is nL+1 = (m)modq, while the maximum number of lines of length
L which can start in the same column is nL = q − nL+1;

c) the total number of lines is k = s1 + s2, where s1 and s2 are the numbers
of lines of length L + 1 and L, respectively.

From statement a) of Property 4.1, it follows that A′′ maintains the (1, q)
periodicity when mapped on a cylinder, i.e. when its first and last columns are
considered consecutive, and, consequently, that A′′ is completely determined
by the values of its first q rows. We can order the lines of A′′ by ordering their
starting points: let (i, j) and (i′, j′) be the starting points of two lines

if j < j′ then (i, j) < (i′, j′);
if j > j′ then (i, j) > (i′, j′);
if j = j′ and i < i′ then (i, j) > (i′, j′);
if j = j′ and i > i′ then (i, j) < (i′, j′), else (i, j) = (i′, j′).

Roughly speaking, we order the starting points of the lines of A′′ from left to
right, and from bottom to up.

Now we define the problem RecCPT(C ′, L, nL, nL+1, k), and we prove its
equivalence with Rec-Strip(Per(1, q), (R′, C ′)): let us consider a torus hav-
ing a squared surface of dimension k × n (k rows and n columns), and let us
indicate with Th,v the class of all its subsets which are horizontally and verti-
cally convex, i.e. such that the cells of a generic element M ∈ Th,v which lie on
the same row or column form a single bar. We choose to represent M with a
binary matrix (see matrix M in Example 10), and we define the problem of the
Reconstruction of a Convex Polyomino on a Torus from partial projections:

RecCPT(C ′, L, nL, nL+1, k)

Instance: a vector C ′ ∈ Nn and four integers L, nL, nL+1, and k.

Output: a k × n matrix M ∈ Th,v, if it exists, such that:
− C ′ is the vector of its vertical projections;
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− its horizontal projections have value L or L + 1;
− on each column of M , at most nL bars of length L, and nL+1 bars of
length L + 1 can start.

Rec-Strip(Per(1, q), (R′, C ′)) and RecCPT(C ′, L, nL, nL+1, k) are proved
to be equivalent by defining a procedure which maps a solution B0 of the
instance I ′ of the first problem into a solution M of the instance I ′′ of the
second one, and vice versa, mapping back M into a matrix B1, in general
different from B0, which is again a solution of I ′. The parameter k is the
number of lines both in B0 and in B1, i.e. k = s1 + s2. In our reconstruction
process, we will identify B1 with the matrix A′′.

So, let us start from B0, and construct a matrix M of dimension k×n, repre-
senting a convex set on a torus, as follows: for each 1 ≤ i ≤ k, the i-th row of
M is composed by a sequence of consecutive entries 1 which starts and ends
in the same columns as `i, the i-th line of B0 with respect to the order above
defined (see Example 10).

The obtained matrix M is a convex set on a torus, since, when moving on
each column of M from up to bottom, the order from bottom to up defined
on the lines of each column of B0 allows the starting bars of length L to be
encountered before those of length L + 1. Furthermore, it is clear that M is a
solution of I ′′.

On the contrary, given a solution M of I ′′, we construct a m × n matrix B1,
with m = LnL+(L+1)nL+1, as follows: for each row i of M , if there exists a bar
of length L [respectively, L+1] lying on it, then we place in B1 a line of length
L [respectively, L+1], which is its i-th one, and which starts in column j. The
placement of the starting points of these lines can be performed with a greedy
technique, since the problem Rec-Strip(Per(1, q), (R′, C ′)) requires to relax
the constraints on the horizontal projections of B1 imposed by R′. For this
reason, the horizontal projections of B1 can differ from those of B0.

However, it can be easily checked that B1 is a solution of instance I ′. The
following example tries to clarify the equivalence:

Example 10 Let us consider the (1, 4) periodical matrix B0 in Fig. 6 of dimension
9× 7 consistent with R′ = (3, 2, 1, 1, 3, 2, 1, 1, 3) and C ′ = (1, 4, 4, 3, 1, 2, 2).

The values of its parameters are L = bm/qc = b9/4c = 2, nL+1 = (m)modq = 1,
nL = q − nL+1 = 3, s1 = r′1 = 3 and s2 = r′2 + r′3 + r′4 = 2 + 1 + 1 = 4.

The matrix B0 has three lines of length L + 1, exactly `1,2, `1,4 and `1,7, and four
lines of length L, exactly `3,2, `2,2, `4,3 and `2,6 (in Fig. 6, the zones where the lines
of lengthes 2 and 3 starts, are highlighted with different colors).
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Fig. 6. The equivalence between Rec-Strip and RecCPT.

Starting from B0, we construct the 7 × 7 matrix M which is horizontally and ver-
tically convex on a torus and which has three bars of length three and four bars of
length two, (one bar for each line of B0) as depicted in Fig.6. The starting column
of each line of B0 is the same as that of the corresponding bar in M .

On the other hand, starting from the matrix M , we compute the (1, 4) periodical
matrix B1 having the same number of lines and the same vertical projections as B0,
by placing in B1 a line for each bar of M . Again the starting column of each bar of
M is the same as that of the correspondent line in B1, while the starting rows of
the lines of B1 are chosen with a greedy strategy.

Lines reconstruction, Step 2: where a 2-SAT formula characterizes
all the solutions of the instance I ′′ of RecCPT(C ′, L, nL, nL+1, k)

We observe that a solution M of I ′′ can be divided into four zones (i.e. subsets
of positions), say B,C, E and P , such that position (i, j) belongs to (C∪P )−E,
if and only if mi,j = 1 (symmetrically, position (i, j) belongs to (B ∪ E) − P
if and only if mi,j = 0). In Fig. 7, the four zones of the matrix M depicted in
Example 10 are pointed out.
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Fig. 7. The matrix M of Fig. 6 and its zones B,C, E and P .

Starting from the instance I ′′ of RecCPT(C ′, L, nL, nL+1, k), we define a 2-
SAT formula Ω (a formula in conjunctive normal form, where each clause has
at most two literals) whose satisfiability is linked to the existence of a solution
M for I ′′ in such a way: if Ω is satisfiable, then we are able to construct a
solution for I ′′ in polynomial time and, vice versa, each solution of I ′′ gives,

18



in polynomial time, an evaluation of the variables satisfying Ω.

The formula Ω determines M by characterizing its zones B, C, E, and P , and
it is defined as the conjunction of three 2-SAT formulas:

Ω1 which encodes the geometrical constraints of M ;
Ω2 which gives the consistency of M with the horizontal and vertical projec-
tions;

Ω3 which imposes the maximum number of bars of lengthes L and L + 1
starting on each column of M .

The variables of Ω belong to the union of the four sets of variables:

B = {b(i, j) : 1 ≤ i ≤ k, 1 ≤ j ≤ n} , C = {c(i, j) : 1 ≤ i ≤ k, 1 ≤ j ≤ n} ,

P = {p(i, j) : 1 ≤ i ≤ k, 1 ≤ j ≤ n} , and E = {e(i, j) : 1 ≤ i ≤ k, 1 ≤ j ≤ n},

which represent B, C, P and E, respectively.

Coding in Ω1 the geometrical constraints of M

Let 1 ≤ i ≤ k and 1 ≤ j ≤ n, and let us define Ω1 as the conjunction of the
following sets of clauses:

Corners =
∧

i,j





(x(i, j) ⇒ x(i− 1, j)) ∧ (x(i, j) ⇒ x(i, j + 1))

(y(i, j) ⇒ y(i + 1, j)) ∧ (y(i, j) ⇒ y(i, j − 1))





for x ∈ C ∪ E and y ∈ B ∪ P ,

Disj =
∧

i,j{(b(i, j) ⇒ c(i, j)) ∧ (p(i, j) ⇒ b(i, j)) ∧ (e(i, j) ⇒ c(i, j))}
Compl =

∧
i,j{ b(i, j) ⇒ c(i, j)}

Anch = { e(1, L) ∧ e(k − c′n + 1, n) ∧ p(k, L + 1) ∧ p(k − c′n, 1)}.

In the sequel, we indicate with Corner(X), X ∈ {B,C, E, P}, the subset of
clauses of Corners whose variables belong to X .

Now, let V1 be an evaluation of the variables in B, C, P , E which satisfies Ω1.
We define the binary matrix M of size k × n as follows:

(c(i, j) = 1 ∧ e(i, j) = 0) ⇒ mi,j = 1 , p(i, j) = 1 ⇒ mi,j = 1 ,

(b(i, j) = 1 ∧ p(i, j) = 0) ⇒ mi,j = 0 , e(i, j) = 0 ⇒ mi,j = 0.

It is immediate to check that M is well defined.
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Lemma 11 The following statements hold:

a) C − E and B − P are h-convex and v-convex regions;
b) {B, C} is a partition of M , P ⊆ B and E ⊆ C;
c) there are no columns of M where both points of P and points of E lie;
d) there are no rows of M where both points of P and points of E lie.

PROOF. a) let us suppose that C − E is not v-convex (h-convex as well),
i.e. there exist three points mi0,j0 , mi1,j0 , and mi2,j0 , with i0 < i1 < i2 such
that mi0,j0 ,mi2,j0 ∈ C − E and mi1,j0 ∈ E. By Corner(E), we get that if
mi1,j0 ∈ E then mi0,j0 ∈ E, a contradiction. A similar argument holds if the
point mi1,j0 ∈ B. The convexity of the zone B − P can be proved similarly.

b) immediate from Disj and Compl.

c) let us suppose that there exist two points mi0,j0 ∈ P and mi1,j0 ∈ E. If
j0 ≤ L then, by Corner(E), we get m1,L ∈ E. Since Anch imposes e(1, L), we
get a contradiction. On the other hand, if j0 > L then, by Corner(P ), we get
mk,L+1 ∈ P . Since Anch imposes p(k, L + 1), we obtain a contradiction (see
Fig. 7).

d) immediate from Anch. 2

Coding in Ω2 the upper and lower bounds of the row and column sums of M

Again we consider 1 ≤ i ≤ k and 1 ≤ j ≤ n, and let row r be the first one
where no points of E lie, as stated in Lemma 11, i.e. r = k − c′n. The formula
Ω2 is the conjunction of the following sets of clauses:

LBC =
∧

i,j





if j > L, e(i, j) ⇒ b(i + c′j, j)

if j ≤ L, b(i, j) ⇒ p(i + k − c′j, j)





UBC =
∧

i,j





if j > L, e(i, j) ⇒ b(i + c′j, j)

if j ≤ L, b(i, j) ⇒ p(i + k − c′j, j)





UBR =
∧

i,j





if i ≤ r, b(i, j) ⇒ e(i, j + L + 1)

if i > r, p(i, j) ⇒ c(i, j + n− L− 1)





LBR =
∧

i,j





if i ≤ r, b(i, j) ⇒ e(i, j + L)

if i > r, p(i, j) ⇒ c(i, j + n− L)





.
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For each column j of M , the formulas LBC and UBC set the value cj to be
both the lower and the upper bound for the vertical projection of M , while
the formulas LBR and UBR impose to each horizontal projection of M to be
greater than L and smaller than L+1, respectively. The constraints coded by
LBC and UBC are expressed in two different ways, depending on the presence
of the sets P or E in the columns of M :

- for each 1 ≤ j ≤ L, we impose that the vertical projections of the zone
B − P have to be less than or equal to k − c′j (formula LBC), and greater
than or equal to k − c′j (formula UBC);

- for each L < j ≤ n, we impose that the vertical projections of the zone
C −E have to be greater than or equal to c′j (formula LBC), and less than
or equal to c′j (formula UBC).

The constraints on the horizontal projections of M are set with a similar
strategy: the matrix is split again into two parts, a first one from row 1 to row
r, where the zone P is not present, and a second one from row r till the end
of M , where the zone E is not present.

Lemma 12 Let M be the binary matrix defined by means of the valuation V2

which satisfies Ω1 ∧ Ω2. It holds:

a) C ′ is the vector of the vertical projections of M ;

b) the value of each horizontal projection of M is L or L + 1.

PROOF. We only prove that the set LBC gives a lower bound to the vertical
projections of M (in the proof we identify each variable with the correspondent
truth value associated by V2).

A complete proof of the lemma is furnished in [10]. Let us proceed by contra-
diction:

if j > L, then let us suppose that there exists j0 such that

c′j0 >
k∑

i=1

c(i, j0)− e(i, j0).

It follows that there exist i0 and i1, with i0 < i1, i1 − i0 ≤ c′j0 such that
e(i0, j0) = 1 and b(i1, j0) = 1. By Corner(B), b(i0 + c′j0 , j0) = 1, and, by
LBC, we get a contradiction, so

k∑

i=1

c(i, j0)− e(i, j0) ≥ c′j0 .
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If j ≤ L, then let us suppose that there exists j0 such that

c′j0 >
k∑

i=1

c(i, j0) + p(i, j0) and so k − c′j0 <
k∑

i=1

b(i, j0)− p(i, j0).

It follows that there exist i0 and i1, such that i0 < i1, i1 − i0 > k − c′j0 ,
b(i0, j0) = 1 and p(i1, j0) = 0. By Corner(P ), it holds p(i0 +k− c′j0 , j0) = 0,
a contradiction, so

k∑

i=1

b(i, j0)− p(i, j0) ≤ k − c′j0 and
k∑

i=1

c(i, j0) + p(i, j0) ≥ c′j0 .

In the same fashion, we can prove that UBC gives an upper bound to the ver-
tical projections of M , and furthermore, that LBR and UBR set the bounds
for the horizontal projections. 2

Remark: the problem characterized by the formula Ω1∧Ω2∧Ω3, (Ω3 being de-
fined hereafter) is slightly more general than RecCPT(C ′, L, nL, nL+1, k), i.e.
it is required that on each column j of M , at most maxL

j bars of length L and at

most maxL+1
j bars of length L+1 start (remind that 0 ≤ maxL

j ≤ nL and 0 ≤
maxL+1

j ≤ nL+1). This new problem, say RecCPT(C ′, L, MaxL, MaxL+1, k),
has to be introduced in order to avoid inconsistencies during the merging of
the matrices A′ and A′′ (this last being computed directly from M). In a sim-
ilar fashion, Rec-Strip can also be modified by strengthening the constraint
on the number of lines of length L and L + 1 starting on each column of its
solutions, so that the equivalence described in Step 1 of the line reconstruction
stage, is preserved.

Coding in Ω3 the maximum number of bars of length L and L + 1 starting on
each column of M

We consider again r = k − c′n, and we define the two vectors

MaxL = (maxL
1 , . . . , maxL

n) and MaxL+1 = (maxL+1
1 , . . . , maxL+1

n )

by using the matrix A′ computed in the preprocessing stage, as follows: for
each 1 ≤ j ≤ n, maxL+1

j is the number of entries 0 (i.e. the entries whose value
is not 1 or X) from position (1, j) to position (nL+1, j) of A′, and maxL

j is the
number of entries 0 from position (nL+1+1, j) to position (q, j) of A′. Roughly
speaking, the vectors MaxL and MaxL+1 store, entry by entry, the maximum
number of starting bars of length L and L + 1 admitted on each column of
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M . The formula Ω3 is the conjunction of the following sets of clauses:

BBL =
∧

i,j





if i ≤ r, b(i−maxL
j , j − 1) ⇒ e(i, j + L)

if (i > r ∧ j > n− L), b(i−maxL
j , j − 1) ⇒ p(i, j + L− n)





BBL+1 =
∧

i,j





if i ≤ r, c(i, j) ⇒ e(i−maxL+1
j , j + L)

if i > r, c(i, j) ⇒ p(i−maxL+1
j , j + L− n)





.

Lemma 13 Let M be the binary matrix defined by means of the valuation V3

which satisfies Ω1 ∧ Ω2 ∧ Ω3. It holds:

a) on each column j of M , at most maxL
j bars of length L can start;

b) on each column j of M , at most maxL+1
j bars of length L + 1 can start.

PROOF. a) we proceed by contradiction, and we suppose that there exists a
column j0 where maxL

j0
+ h, with h > 0, (consecutive) bars of length L start,

from row i0 −maxL
j0
− h + 1 to row i0:

if i0 ≤ r, then b(i0 + maxL
j0

, j0 − 1) = 1 and e(i0, j0 + L) = 1, so by BBL, we
obtain a contradiction;

if i0 > r and j > n−L, then b(i0+maxL
j0

, j0−1) = 1 and p(i0, j0+L−n) = 1,
so, by BBL, we obtain a contradiction.

Hence, for all 1 ≤ j ≤ n, column j contains at most maxL
j starting bars of

length L (see Figure 8).

L
ji − Max

L
ji − Max
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C E

j j+L

i

P

C

j

i

j+L−n

B

Fig. 8. BBL prevents these two situations when maxL
j = 3, and i ≤ r or

(i > r ∧ j > n− L), respectively.

Point b) can be similarly proved (see [10]). 2

The following theorem is a direct consequence of Lemmas 11, 12, and 13:
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Theorem 14 Ω1 ∧Ω2 ∧Ω3 is satisfiable if and only if there exists an element
M ∈ Th,v of dimension k×n which is consistent with C ′, and such its generic
column j contains at most maxL

j starting bars of length L and at most maxL+1
j

starting bars of length L + 1.

Since Ω1 ∧ Ω2 ∧ Ω3 is a 2-SAT formula which characterizes a generic instance
of RecCPT(C ′, L, MaxL,MaxL+1, k), then its solution requires an amount
of time which is linear in the number of its clauses [2].

Lines reconstruction, Step 3: where matrix A′′, solution of instance
I ′, is computed from M

Since the matrix M , obtained by a valuation of Ω, is a solution of I ′′, then
the equivalence between the problems Rec-Strip (Per(1, q), (R′, C ′)) and
RecCPT(C ′, L, nL, nL+1, k), proved at the beginning of this section, allows
an easy computation of A′′.

Fusion

In this final stage the matrices A′ and A′′ are merged, and the final solution A
of Rec-Strip(Per(1, q), (R, C)) is achieved by using the Procedure 6, Fusion
whose details are sketched below. The vectors

StartL = (sL
1 , . . . , sL

n) and StartL+1 = (sL+1
1 , . . . , sL+1

n )

support the computation by storing in sL
j and sL+1

j , with 1 ≤ j ≤ n, the
number of starting lines of length L and L+1 in column j of A′′, respectively.

Procedure 6 Fusion

Initialize matrix A to the values of A′;
Compute vector Start from A′′ as already indicated;
for j = 1 to n do

for i = 1 to q do
if (i ≤ nL+1) & (sL+1

j > 0) & (A[i][j] == 0) then

A[i, j] = 1; sL+1
j = sL+1

j − 1;
end if
if (i > nL+1) & (sL

j > 0) & (A[i][j] == 0) then
A[i, j] = 1; sL

j = sL
j − 1;

end if
end for

end for
Complete the lines of A from the placed starting points;
Change back to the value 0 all the elements of A of value X;
Return A as output.

24



It is immediate to observe that Procedure 6 can not generate inconsistences
(by the definitions of A′ and A′′), and that its output A is one of the solutions
of Rec-Strip(Per(1, q), (R, C)), as desired. Since we already stressed that
each step of the reconstruction is performed in polynomial time, then it holds
that:

Theorem 15 The problem Rec-Strip(Per(1, q), (R,C)) can be solved in poly-
nomial time.

Example 16 Let us reconstruct a solution of Rec-Strip(Per(1, 3), (R, C)) with

R = (4, 2, 5, 2, 3, 5, 5, 1) and C = (3, 2, 4, 3, 3, 3, 4, 1, 1, 3).

Preprocessing: the 8 × 10 matrix A′ is created and its elements are initialized
to the value blank. It is computed the vector Sum = (6, 5, 5, 5, 6) which allows to
detect an entry 1 in the couple of left boxes (7, 1) and (8, 1), and an entry 1 in the
couple of right boxes (1, 10) and (2, 10) not belonging to any line. These two entries
are placed (with a greedy strategy) in positions (8, 1) and (2, 10), and position (2, 9)
is marked with the symbol X in order to prevent lines to start there. Finally, all the
blank are changed to the value 0, obtaining matrix A′ of Fig. 9.

0 0 1
0 1 1

0 0 1
0 0
0 1

0 1

0
1

0

0

1
0

1
00

0 00

0
1

1

0
01

0 0 0
0 0 0 1 0

0 0 1
0 0 0

1 0 0 0 0 1
0 1 1 0 0 1 1 0 0

0 0 0 0 0 1 0 0 0
10 1 0 1 0 0 0

1

A’’ :M :

0 1 0
0 0 1

1 1 0
0 0
0 1

1 0

1
0

0

1

0

0
10

1 00

0
1

1

0 0 0
0 0 0 0 0

0 0 0
0 0 0

0 1 0 0

0

0 0 0000010 1

1 0
0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 1 0 0

0
01

1 0 0 0 0 0 1
00 0 0 0 0

0 1
0 1

10

A’ :

0 0 0
0 0 0

0 0 0
0 0
0 0

0 0

0
0

0

0

0
0

0
00

0 00

0
0

0

0
0

0 X 1
0 0 0 0 0

0 0 0 0
0 0 0

0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0
00 0 0 0 0 0 00

Fig. 9. The three matrices which support the computation of
Rec-Strip(Per(1, 3), (R, C)). The final solution is obtained by merging A′

with A′′, and then changing back all the X to the value 0.

Lines reconstruction: starting from the updated vectors

R′ = (3, 2, 5, 2, 3, 5, 4, 1), C ′ = (2, 2, 4, 3, 3, 3, 4, 1, 1, 2) and Sum = (5, 5, 5, 5, 5),

the instance I ′′ of RecCPT(C ′, L,MaxL,MaxL+1, k) is created, where L = 2,
k = 10, MaxL+1 = {2, 2, 2, 2, 2, 2, 2, 2, 1, 1}, and all the elements of MaxL are set
to the same value nL = 1.

Then, I ′′ is characterized by a 2-SAT formula Ω, one of whose valuations determines
matrix M depicted in Fig. 9. One can immediately observe that M belongs to Th,v,
it is consistent with C ′, its horizontal projections have values 2 or 3, and it satisfies
the constraints imposed by the vectors MaxL and MaxL+1. The matrix A′′ of Fig. 9
is computed from M .
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Fusion: the matrices A′ and A′′ merge into the final solution A. Notice again that
no inconsistencies can occur at this stage, since the number of starting lines on each
column of A is tuned by the entries of the vectors MaxL and MaxL+1.

5 Conclusions

Our main purpose here has been to introduce periodicity properties in terms
relevant for discrete tomography. The periodicity is a natural constraint and
it has not yet been studied in this environment. As pointed out in the Intro-
duction, the motivation of this study is in the attempt of limiting the class of
possible solutions when we reconstruct a discrete planar object using a priori
information comprehending also its periodical behavior. This means that we
modelled such a knowledge in terms of a subclass of binary images to which
the object must belong.

It is not surprising that we obtain also some interesting uniqueness results, as
pointed out for the class of binary matrices having period (1, 1). We have also
shown a simple greedy algorithm for reconstructing an element of Per(1, 1)
consistent with a given couple of vectors of horizontal and vertical projections.
Such a reconstruction becomes more difficult when dealing with binary matri-
ces having period (p, 1) or (1, q). In these cases, we have described a polynomial
time algorithm which solves the subproblem Rec-Strip, and which uses a re-
duction to 2-Satisfiability problem. We want to point out that an interesting
property of this approach is that it uses a sub-procedure for reconstructing an
element of Th,v (a subclass of convex polyominoes lying on a torus) from the
partial knowledge of its horizontal and vertical projections.

Future challenges will concern the general problem of the reconstruction of
binary matrices with period (1, q) and (p, 1) from their projections, and the
extension of this result to the class Per(p, q). So, this paper is only an initial
approach to the problem of reconstructing binary matrices having periodicity
properties from a small number of discrete projections. Lot of work should be
done to understand such environment: we only challenge the reconstruction
problem from two projections in some special cases, but many consistency,
reconstruction and uniqueness problems can be reformulated imposing peri-
odical constraints.
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