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Abstract

We describe some combinatorial properties of an intriguing class of infinite words,
called smooth, connected with the Kolakoski one, K, defined as the fixed point
of the run-length encoding ∆. It is based on a bijection on the free monoid over
Σ = {1, 2}, that shows some surprising mixing properties. All words contain the
same finite number of square factors, and consequently they are cube-free. This
suggests that they have the same complexity as confirmed by extensive compu-
tations. We further investigate the occurrences of palindromic subwords. Finally
we show that there exist smooth words obtained as fixed points of substitutions
(realized by transducers) as in the case of K.
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1 Introduction

The classification of infinite words over a finite alphabet by using properties
like avoidance of some patterns, or existence of some others, is one of the
problems considered by Axel Thue in a series of papers [18,19], for which J.
Berstel [1] provided an annotated translation. The pioneering work of Thue
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on overlap-free and square-free words led to the discovery of infinite classes
of words on a finite alphabet sharing these properties. In these classes, the
infinite Thue-Morse word

M = lim
n→∞

µn(1) = 1221211221121221 · · ·

obtained by iteration of the morphism defined over the two-letter alphabet
Σ = {1, 2} by µ(1) = 12 ; µ(2) = 21, is an infinite overlap-free word, which is
characteristic of its class. Among the (popular) patterns, palindromes play an
important role and, precisely, they are essential in order to construct infinite
overlap-free words [19]. Moreover, infinite overlap-free words are characterized
by means of the morphism µ and are recurrent, that is, they have the property
that every factor appears infinitely many often.

Thue’s work remained forgotten for a while and some of its results were redis-
covered by M. Morse [16] who introduced several complexity measures among
which the number P (n) of different factors of each length. He also charac-
terized the class of Sturmian words by the property P (n) = n + 1. Other
characterizations were provided more recently, and especially that of A. de
Luca and F. Mignosi (see [15]) which is based on palindromic factorizations.
Again, the Sturmian words are recurrent, and among them lives the Fibonacci
word

φω(1) = 1211212112112121121211211212112112 · · ·

obtained by iterating the morphism φ defined by φ(1) = 12 ; φ(2) = 1 . In
this paper we describe a general framework for the study of another particular
class of infinite words over the 2-letter alphabet Σ = {1, 2}. This class is
invariant under the action of the run-length encoding operator, and is related
to the curious Kolakoski word

K = 22112122122112112212112122112112122122112122121121122 · · ·

which attracted considerable attention by showing some intriguing combina-
torial properties, consisting mainly of a set of conjectures due to Dekking [7].
In particular it is not known wether K is recurrent or not, if the set of its
factors is closed under permutation of letters or mirror image, if the density
of 1’s is equal to 1/2. The (finite) palindromes of the elements of this class
are characterized by means of the palindromic closure of the prefixes of the
Kolakoski word and reveal an interesting perspective for understanding some
of the conjectures [3]. In particular, recurrence, mirror invariance and per-
mutation invariance are all direct consequences of the presence in K of these
palindromes. This last assumption however remains a conjecture.
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Other regularities such as squares, overlaps can be studied in this framework
and extend the work of A. Carpi [4]. This work is an excerpt/extension of the
Master thesis of Annie Ladouceur [11], which also contains numerous computa-
tions performed with an efficient library of functions, and these computations
enabled us to discover the combinatorial properties presented here.

2 Definitions and notation

Let us consider a finite alphabet of letters Σ. A word is a finite sequence of
letters w : [1..n] −→ Σ , n ∈ N, of length n, and w[i] denotes its i-th letter.
The set of n-length words over Σ is denoted Σn. By convention the empty

word is denoted ǫ and its length is 0. The free monoid generated by Σ is
defined by Σ∗ =

⋃
n≥0 Σn. The set of right infinite words is denoted by Σω

and Σ∞ = Σ∗ ∪ Σω. Adopting a consistent notation for sequences of positive
integers, N∗ =

⋃
n≥0 Nn is the set of finite sequences and Nω is that of infinite

ones. Given a word w ∈ Σ∗, a factor f of w is a word f ∈ Σ∗ satisfying

∃x, y ∈ Σ∗, w = xfy.

If x = ǫ (resp. y = ǫ ) then f is called prefix (resp. suffix). The set of all factors
of w is denoted by F (w), and the set of those of length n is Fn(w) = F (w)∩Σn.

Finally Pref(w) denotes the set of all prefixes of w. The length of a word w

is |w|, and the number of occurrences of a factor f ∈ Σ∗ is |w|f . Clearly, the
length of a word is given by the number of its letters,

|w| =
∑

α∈Σ

|w|α. (1)

A block of length k is a factor of the particular form f = αk, with α ∈ Σ. If
w = pu, and |w| = n, |p| = k, then p−1w = w[k + 1] · · ·w[n] = u is the word
obtained by erasing p. As a special case, when |p| = 1 we obtain the shift

function defined by s(w) = w[2] · · ·w[n]. The mirror image ũ of u ∈ Σn is the
unique word satisfying

u[i] = u[n − i + 1], ∀ 1 ≤ i ≤ n.

A palindrome is a word p such that p = p̃ . A factor of the form uu is called a
square, and an overlap is a factor of the form xuxux, where x is a non empty
factor. For a language L ⊆ Σ∞, we denote by Pal(L), Squares(L), Overlaps(L)
the sets, respectively, of its palindromes, square and overlapping finite factors.
Over the restricted alphabet Σ = {1, 2}, there is a usual length preserving
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morphism, the swapping of the letters, defined by 1 = 2 and 2 = 1, which
extends to words as follows. The complement of u ∈ Σn, is the word

u = u[1] u[2] u[3] · · ·u[n] .

Note that, the complement corresponds to a permutation of letters of Σ. The
occurrences of factors play an important role and an infinite word w is recur-
rent if it satisfies the condition

u ∈ F (w) =⇒ |w|u = ∞ .

Clearly, every periodic word is recurrent, and there exist recurrent but non-
periodic words, the Thue-Morse word M being one of these [16]. Finally, two
words u and v are conjugate when there are words x, y such that u = xy and
v = yx. The conjugacy class of a word u is denoted by [u], and the length is
invariant under conjugacy so that it makes sense to define |[u]| = |u|.

3 Run-length encoding

The widely known run-length encoding is used in many applications as a
method for compressing data. For instance, the first step in the algorithm
used for compressing the data transmitted by Fax machines, consists of a run-
length encoding of each line of pixels. It also was used for the enumeration of
factors in the Thue-Morse sequence [2].

Let Σ = {1, 2, } be an ordered alphabet. Then every nonempty word w ∈ Σ+

can be uniquely written as a product of factors as follows

w =





1i12i21i3 · · · , if w ∈ 1 · Σ∗,

2i11i22i3 · · · , if w ∈ 2 · Σ∗,

where ij > 0 . The operator giving the size of the blocks appearing in the
coding is a function ∆ : Σ∗ −→ N∗,

∆(w) = [i1, i2, · · · , ik],

with the convention ∆(ǫ) = 0, which is easily extended to infinite words as
∆ : Σω −→ Nω.
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Example. Let w = 12212211, then w = 1122112212, and ∆(w) = [1, 2, 1, 2, 2].
Often the punctuation and the parentheses are omitted in order to manipulate
the more compact notation ∆(w) = 12122.

This example is particular: indeed, the coding integers coincide with the al-
phabet on which is written w, so that ∆ can be viewed as a partial function
∆ : {1, 2}∗ −→ {1, 2}∗. Although a general theory can be done over arbi-
trary alphabets, with the manner of P. Lamas [12], we restrict from hereon
the study to this case, i.e. to words over the two-letter alphabet Σ = {1, 2}
and not having 111 or 222 as factors.

The function ∆ is a contraction, that is, for every word w ∈ Σ∗ we have

|∆(w)| ≤ |w| , (2)

and equality holds when

w ∈ {ǫ, 2} · (12)∗ · {ǫ, 1}. (3)

The function ∆ is not bijective because ∆(w) = ∆(w). However pseudo-inverse
functions

∆−1
1 , ∆−1

2 : Σ∗ −→ Σ∗

can be defined by:

∆−1
α (u) = αu[1]αu[2]αu[3]αu[4] · · · , for α ∈ {1, 2}, (4)

and ∀u ∈ Σ∗, we have ∆−1
2 (u) = ∆−1

1 (u). For later use, given a word x ∈ Σn of
length at least 2, we define ∆−n

x by ∆−n
x (u) = ∆−1

x[1](∆
−n+1
s(x) (u)). The operator

∆ can be iterated. Since ∆(1) = 1, arriving at a word of length 1 provides no
impediment to iterating the operator.

Example. Let w = 12211211. The successive application of ∆ gives :
∆0(w) = 12211211;
∆1(w) = 12212;
∆2(w) = 1211;
∆3(w) = 112;
∆4(w) = 21;
∆5(w) = 11;
∆6(w) = 2.
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Looking at the column word

u = ∆0(w)[1] · · ·∆6(w)[1] = 1111212,

the initial word w can be retrieved, starting from the bottom and writing the
prescribed number of consecutive letters. Using the notation above, we have

w = ∆−6
111121(2).

A natural question concerns the reversibility of this construction. The fact
that

∆(1) = ∆(2) = 1 = ∆k(1), ∀k ∈ N

shows that the column word u′ = 11112121k, ∀k ≥ 0 also permits the retrieval
of w. To avoid this redundancy, it suffices to restrict the column words ending
with a 2. Moreover, in order to keep the coding alphabet constant Σ = {1, 2},
we define the set

∆k
Σ = {w ∈ Σ+ | (∆k(w) = 2) ∧ (∀j, 1 ≤ j ≤ k − 1, ∆j(w) ∈ Σ+)},

and denote ∆+
Σ = ∪k≥1∆

k
Σ. Therefore the desired representation is

Φ : ∆+
Σ −→ Σ+,

Φ(w)[j + 1] =∆j(w)[1] for 0 ≤ j ≤ k. (5)

Consequently, the inverse of Φ is defined as follows. Let u ∈ Σn, n > 0, then

Φ−1(u) = ∆n−1
u[1..n−1](u[n]), (6)

or inductively by Φ−1(u) = w1, where

wn = u[n] ;

wj = ∆−1
u[j](wj+1), ∀j such that 1 ≤ j < n.

Of course, this bijection extends to infinite words, provided some precautions
are taken.

Definition 1 An infinite word W ∈ Σω is said to be smooth if and only if

∀k ∈ N, ∆k(W ) ∈ Σω.

Let K denote the set of all infinite smooth words. The elements of the set F (K)
of finite subwords of K are also called smooth. The extension is Φ : K −→ Σω,

denoted and defined identically by (5).
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The operator ∆ has two fixpoints, that is

∆(K) = K, ∆(1 · K) = 1 · K,

where K is the Kolakoski word [10], whose first terms are

K = 22112122122112112212112122112112122122112122121121122 · · ·

Clearly K ∈ K, and we have Φ(K) = 2ω and Φ(1 · K) = 1ω.

The bijection Φ appears in the thesis of P. Lamas [12] and is used for a classi-
fication of infinite words. Independently, F.M. Dekking [8] used this bijection
in order to show, for all n ∈ N, the existence of words satisfying ∆n(w) = w.
The Kolakoski word K corresponds to the case n = 1.

It is easy to check that ∆ commutes with the mirror image ( ˜ ), is stable
under complementation ( ) and preserves palindromes :

Proposition 2 For all u ∈ Σ∗ and for all p ∈ Pal(Σ∗) the operator ∆ satisfies

the conditions

(a) ∆(ũ) = ∆̃(u) ;
(b) ∆(u) = ∆(u) ;
(c) ∆(p) ∈ Pal(Σ∗).

The following closure properties follow

u ∈ ∆k
Σ ⇐⇒ u, ũ ∈ ∆k

Σ, ∀k ≥ 0; (7)

u ∈ K ⇐⇒ u ∈ K; (8)

The fact that ũ does not appear in statement (8) is not surprising because
closure by mirror image clearly involves twosided infinite words, which are not
considered here.

4 Avoidable and unavoidable patterns

First, the class K does not contain periodic words. Indeed, an eventually peri-
odic word W ∈ K can always be written as W = xuω, where u is the smallest
period also satisfying Last(x) = Last(u) 6= First(u), possibly by shifting con-
veniently the period. Then ∆(W ) = ∆(x)∆(u)ω, and we have two cases. If
|∆(u)| = |u| then from conditions (2) and (3) we have ∆(W ) = ∆(x)1ω . Oth-
erwise, ∆(u) is a strictly smaller period, and an inductive argument establishes
the claim (see also [6,12]).
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In the case of the set of factors of K, ∆ is also a strict contraction except for
a finite number of very small factors. For later use we quote this property in
the following lemma.

Lemma 3 For every u ∈ F (K), such that |u| > 4 we have |∆(u)| < |u|.

Proof. From condition (3) it suffices to show that u does not contain 21212 or
12121. Suppose u = x21212y, then, ∆(u) = ∆(x2).111.∆(2y), which implies
that u 6∈ F (K)). The other case is similar. Consequently every factor with
length |u| > 4 contains necessarily a block of length 2, i.e. the block 11 or/and
the block 22. 2

Every finite word w ∈ ∆+
Σ can be easily extended to the right in a smooth

word by means of the function Φ defined by (5):

∀u ∈ Σ∞, w ∈ Pref(Φ−1(Φ(w) · u)).

Since an infinite smooth right extension W of a smooth finite word w contains
w as a factor, this means that the factors of the class K are differentiable in
the sense of [3,7,20]. The left extensions require more work.

Proposition 4 For all v ∈ ∆k
Σ, there exists u ∈ ∆k

Σ such that uv ∈ ∆k+2
Σ .

Proof. By definition Φ(v) ends with a 2, and consequently Φ(v) ends with a
1. Then, compute u′ = Φ−1(Φ(v)), and form the sequence of words,

wn = ∆n(ũ′ · v) = ∆n(ũ′) · ∆n(v), n = 0, . . . , k,

where the searched word u = ũ′. Clearly, wk = 12, therefore ∆(wk) = 11 and
∆2(wk) = 2. Then we have, w0 = uv and Φ(w0) = w0[1] · · ·wk[1] 1 2 . 2

Example. Let v = 21122122, then w0 = 11212211 · 21122122, and Φ(w0) =
121112112,

1 1 2 1 2 2 1 1 · 2 1 1 2 2 1 2 2

2 1 1 2 2 · 1 2 2 1 2
1 2 2 · 1 2 1 1

1 2 · 1 1 2
1 1 · 2 1

2 · 1 1
1 · 2

1 · 1
2
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The situation is different in the infinite case. The fact that K and 1K are
fixpoints of ∆ implies that K is not the proper suffix of any smooth word in
K, excepted 1K.

Lemma 5 For all p ∈ Σ+ such that |p| ≥ 2, we have pK 6∈ K.

Proof. Since smooth words do no contain 111 as a factor we may assume that p

ends with a 1. We have then ∆(pK) = ∆(p)∆(K) = ∆(p)K. But by iterating,
∆k(p) = 2 for some k so that ∆k(pK) = 2 · (2211 · · ·). Therefore ∆k+1(pK)
starts with a 3 which concludes the proof. 2

We say that an infinite smooth word W is left extendable if there exists an
infinite smooth word W ′ having W as a proper suffix. For instance 1K is not
left extendable but K is a proper suffix of only one word, namely 1K. The
next proposition gives a characterization of left extendable words in K.

Proposition 6 An infinte word W ∈ K is left extendable if and only if

Φ(W ) = u · 2ω, for some u 6= 1.

Proof. (⇐=) If u = ǫ the precedent Lemma 5 applies: 1K is the unique ex-
tension of K and does not have an extension. If |u| = k > 1, we may assume
that u ends with 1 by removing the trailing 2’s. Define

w = Φ−1(u) = ∆−k+1
u[1..k−1](2),

so that we obtain

∆k(w̃ · W ) = 1 · K . (9)

For instance, let Φ(W ) = 211121 · 2ω, then we have

1 1 2 1 2 2 1 1 · 2 1 1 2 2 1 2 2 · · ·
2 1 1 2 2 · 1 2 2 1 2 · · ·

1 2 2 · 1 2 1 1 · · ·
1 2 · 1 1 2 · · ·
1 1 · 2 1 · · ·

2 · 1 1 · · ·
1 · 2 · · ·
↓ · ↓
1ω · 2ω

where w = Φ−1(122212) and the top line is w̃ · W.

(=⇒) We proceed by contradiction. Assume that for all u, Φ(W ) = u·v 6= u·2ω.
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There are several cases to consider. If u = 1k and v = 1w, then W = 1K which
is not left extendable. The case u 6= 1k and v = 1ω corresponds to either a finite
word, which are not considered here, or to a word W such that ∆k(W ) = 1K,

as shown in the example above, and equation (9). We may assume that u ends
with a 2, by putting the trailing 1’s in the v. We also have

∆k−1(W ) = 2 · K = 2112212 · · · ,

and the possible extensions are 2 · 2112212 · · · which contains a cube, or 1 ·
2112212 · · · which is not smooth since ∆(1 · 2112212 · · ·) = 112211 · · ·.

For the last case, there must be an infinite number of occurrences of the
factor 12 (and also 12) in uv. Therefore assume that uv = u′ · 12 · v′ for
some v′ 6∈ {1ω, 2ω}. Any finite extension w · W of W must satisfy for some
k ≥ 0, ∆k(wW ) = ∆k(w) ·∆k(W ), with ∆k(w) = 1 and ∆k(W ) = 2 · · ·. Since
there are infinitely many occurrences of 12 in uv, there exist an index i > 0
such that ∆k+i(w) = 1 and ∆k+i(W ) = 11 · · ·, and the factor 111 appears.
Contradiction. 2

A consequence is that proper suffixes of the Kolakoski word are not smooth.

Corollary 7 For all p ∈ Pref(K), p 6= ǫ, we have p−1K 6∈ K.

Proof. Let U be a proper suffix of K. Observe that U 6= K, since otherwise
K would be periodic. Then, assume that U is smooth, and left extendable to
K. Therefore Φ(U) = u · 2ω, for some u such that Last(u) = 1. Let |u| = k,
so that ∆k−1(U) = K. This would imply that ∆k−1(K) = 22K = 221122 · · · ,
contradiction. 2

4.1 Squares and overlaps

A. Carpi [4,5] established that the square factors in K have length 2, 4, 6, 18
and 54. In fact this is a property of the class K. The proof follows his scheme,
but is sufficiently different that we provide it for the sake of completeness.

Define the set S to be the smallest set in F (K) satisfying the following condi-
tions

F≤7(K) ⊆ S

x ∈ S =⇒x ∈ S

xy ∈ S =⇒ yx ∈ S

x ∈ S, |x| = 2k =⇒∆−1(x) ∈ S
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Since the set S is closed under complementation and conjugation, to establish
that S is finite, it suffices to consider only minimal words (according to the
lexicographic order) of the conjugacy classes.

Lemma 8 The set S is finite.

Proof. Only the even-length words of S expand in new words of S and |x| ≤
4 implies that |∆−1(x)| ≤ 7. Therefore it suffices to consider the following
conjugacy classes of minimal smooth words (of length 6)

[112112], [112122], [112212], [122122] .

The classes ∆−1([112122]) and ∆−1([112212]) contain words of length 9, so
that their expansion terminates. Consider now ∆−1([112112]) = {[11212212]},
which contains words of length 8. Going further we obtain

∆−1([11212212])= {[112112212212], [112112122122]}

∆−1([112112212212])= {[112112212212112122], [112112212212112122]}

∆−1([112112122122])= {[112112212112122122], [112112212112122122]} .

The length of words on the right-hand side is 18, with an equal number of 1’s
and 2’s so that the length of the next round of ∆−1 will be 27, ending the
expansion. The last case is similar and the lengths obtained are 10 and 15. 2

We need the following technical lemma (see [4]).

Lemma 9 For any smooth finite word of the form xyx, with |y| ≤ 5, one has

xy ∈ S.

Proof. By definition, the statement is true when |xy| ≤ 7. Let W = rxyxW ′

be an infinite smooth word, and assume that |xy| > 7. By suitably factorizing
one can also assume that

Last(r) 6= First(x) 6= Last(xy), and Last(x) 6= First(yx) = First(W ′),

as shown in Figure 1(if r is empty the conditions above still hold), where a, b

are letters in {1, 2}. Clearly |z| = ∆(xy) is even and ∆(xyx) = x′y′x′ ∈ F (K),
with the conditions

|y′| ≤ 5 and |x′y′| < |xy|.

The second condition is true by virtue of Lemma 3, and the inductive hypoth-
esis. Finally, z = x′y′ ∈ S implies ∆−1(z) ∈ S and therefore xy ∈ S which
completes the proof. 2
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W

W

W ’

x’

Fig. 1. The inductive step.

A special case of Lemma 9 occurs when |y| = 0, that is, if xx is smooth then
x ∈ S, showing that S contains the basis for squares. Since S is finite, a
systematic examination leads to the next proposition.

Proposition 10 The lengths of smooth squares are 2, 4, 6, 18 and 54.

Since each overlap xuxux contains at least two squares, namely xuxu and
uxux, it follows that the number of overlaps is finite. More precisely, by a
direct computation of smooth words one provides the following table where
the factors numbered 3, 6, 8 and 13 are those given by A. Carpi in [4].

1- 2 12 2 12 2

2- 1 22 1 22 1

3- 21 2 21 2 21

4- 2 11 2 11 2

5- 1 12 1 12 1

6- 21 1 21 1 21

7- 1 21 1 21 1

8- 12 1 12 1 12

9- 1 22122112 1 22122112 1

10- 2 12211211 2 12211211 2

11- 2 11211221 2 11211221 2

12- 2 21 2 21 2

13- 12 2 12 2 12

14- 1 21122122 1 21122122 1

15- 1 21121221121122121121122122 1 21121221121122121121122122 1

16- 2 12211211221211211221221211 2 12211211221211211221221211 2

17- 1 21122122112122122112112122 1 21122122112122122112112122 1

18- 2 12212112212211212212211211 2 12212112212211212212211211 2

19- 2 11212212211211212211211221 2 11212212211211212211211221 2

20- 2 11211221221211221221121221 2 11211221221211221221121221 2

21- 1 22121121122122121122122112 1 22121121122122121122122112 1

22- 1 22122112112122112112212112 1 22122112112122112112212112 1

All the square factors but 22 and 11 are deduced from the overlaps, and by
systematic inspection of the squares, it follows that

Corollary 11 Smooth words are cube-free.
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4.2 Palindromic loci : OK, ce “r” s’avère nul; lune! rêva Srečko

In [3], the authors gave a characterization of smooth palindromes. More pre-
cisely, by using the left palindromic closure of a word p – Lpc(p) for short – i.e.
the smallest palindrome having p for suffix, the class of smooth palindromes
is (see [3])

Pal(K) = Lpc(Pref(∆−1(1 · K) ∪ ∆−2(1 · K))). (10)

We take now a closer look to the occurrences of palindromes. The word K does
not have arbitrarily long palindromic prefixes. In fact, the only palindromic
prefixes of K are

Lemma 12 Pal(K) ∩ Pref(K) = {ǫ, 2, 22}.

Proof. Any palindromic prefix q of K may be written as q = p · x · p̃ with
x ∈ {ǫ, 1, 2}. When |p| ≤ 2 this leads to the palindromic prefixes ǫ, 2, 22 of K.
If |p| > 2, then suppose first that x ∈ {1, 2}. Then ∆(q) = p′ · 1 · p̃′ for some
p′ ∈ Pref(K). As ∆(q) ∈ Pref(K), by the fixpoint property, we may repeat
the argument until we get for some k, ∆k(q) = 2 ·1 ·2. Contradiction. If x = ǫ,
then q = pp̃ and p ends with 12 or 21. In both cases we have δ(q) = p′ · 2 · p̃′

for some p′ ∈ Pref(K), reducing the problem to the previous case. 2

As a consequence, we obtain that two occurrences of a smooth left palindromic
closure of a prefix q of K are not too close.

Proposition 13 Let p, q ∈ Pref(K) such that |q| ≤ |p| ≤ 3|q| + 1. Then

x = q̃ · 1 · q is a smooth palindrome and p · x · p̃ 6∈ F (K).

Proof. We have p · x · p̃ = p · (q̃ · 1 · q) · p̃ = (pq̃) · 1 · (qp̃) = (̃qp̃) · 1 · (qp̃),
where the right hand side is a palindrome if and only if qp̃ ∈ Pref(K). We have
two cases. If |p| = |q|, the previous lemma applies. If |p| > |q|, then p = qy

and q p̃ = q (̃qy) = q ỹ q̃, and therefore y is a palindrome of odd length. An
inductive argument yields the result. 2

On the other hand, there are words in K starting with arbitrarily long palin-
dromes. Indeed, define the sequence of full prefixes of K by

Full(K) =
{
fn = ∆−n

2 (2n) |n ∈ N
}

.

The first full prefixes of K are

2, 22, 2211, 221121, 221121221, 22112122122112, . . .

13



Every full prefix fn satisfies ∆(fn) = fn−1 and can be written as

fn = fn−1 u for some u ∈ Σ+.

Consequently

wn = f̃n · 1 · ∆−1
2 (fn) = f̃n · 1 · fn+1 = f̃n · 1 · fn · u ∈ ∆∗

Σ

Equivalently wn = ∆−n
x (2122) for a suitable x ∈ Σn, and we have the following

result.

Proposition 14 Let wn be defined as above. Then for each n ∈ N, there exists

an infinite set of words in K starting with wn.

Proof. For any word U ∈ Σω we have Φ−1 (Φ(wn) · U) ∈ K. 2

As a direct consequence we have that every factor u ∈ F (K) is also a factor
of an an infinite set of words W ∈ K − {K}. Indeed it suffices to take a full
prefix containing u.

Corollary 15 For every factor u ∈ F (K), we have Card({W ∈ K | u ∈
F (W )}) = ∞.

Moreover, with a bit of care, we can do better. According to Proposition 4
every full palindrome Q, can be extended to the left and to the right. Therefore
there exist infinite words containing it at almost arbitrary positions. All these
results suggest, as supported by extensive computations, that all words in the
class K share not only the same complexity but also the same factors, namely
the factors of the Kolakoski word.

5 Fixed points of ∆ and substitutions

Recall that ∆ has two fixpoints, which are ∆(K) = K and ∆(1.K) = 1.K.

Furthermore, Φ(K) = 2ω and Φ(1.K) = 1ω. It follows that K is obtained as
the fixpoint of the substitution (see [10,6])

κ :





22 → 2211

21 → 221

12 → 211

11 → 21

(11)
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It is then easy to see that, for every integer n, ∆n also has fixpoints (see [8,12]):
each finite word u of length n satisfies

∆n(Φ−1(uω)) = Φ−1(uω).

Moreover, for each k such that 0 ≤ k ≤ n − 1 we have

∆n+k(Φ−1(uω)) = ∆kΦ−1(uω),

so that all conjugates in the conjugacy class [u] of u also provide fixpoints.
This is not surprising since the full shift (Σ∗, s) (s being the shift operator)
is topologically conjugate of (K, ∆) in the terminology of dynamical systems
([13]).

Example. For n = 2, there are 4 fixpoints for the operator ∆2 : we already
know Φ(K) = (22)ω and Φ(1.K) = (11)ω which are also fixpoints for the
operator ∆; the other two are Φ(K12) = (12)ω and Φ(K21) = (21)ω.

Now the question arises naturally whether there exist smooth words, besides
K, that are obtained by some substitution. The answer is positive and relies
on the existence of convenient codes. Recall that X ⊂ F (K) is a code if every
smooth word factorizes in at most one manner over X.

Definition 16 Let Cn ⊂ F (K) be a code. Cn is said to be convenient for

∆n(W ) = W if and only if

(i) W = w1w2 · · ·wi · · ·, with wi ∈ Cn;

(ii) ∆−k
1v (wi) = 1xi2, and, ∆−k

2v (wi) = 2yi1, with v ∈ Σk−1, 1 ≥ k ≥ n, for

some smooth factors xi, yi.

Take for example n = 1. In order to have ∆−1
1 (wi) = 1xi2 and ∆−1

2 (wi) = 2yi1
for all words of Cn we must take wi of even length. Thus a convenient code is
given by C1 = {11, 12, 21, 22}. Of course K or 1.K factorize over C1 (because
it contains all the words of length 2 in F (K)). Furthermore, we have

∆−1
2 (11) = 21, ∆−1

2 (12) = 211, ∆−1
2 (21) = 221, ∆−1

2 (22) = 2211

∆−1
1 (11) = 12, ∆−1

1 (12) = 122, ∆−1
1 (21) = 112, ∆−1

1 (22) = 1122

so that C1 is a convenient code. Remark that the operator ∆−1
2 applied to C1

is exactly the well-known substitution κ given above (11) that generates K,
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while ∆−1
1 applied to C1 defines a substitution κ′ that generates 1.K :

κ′ :





22 → 1122

21 → 112

12 → 122

11 → 12

The definition of convenient code Cn simply ensures that, for 1 ≤ k ≤ n,
applying a sequence of ∆−1

1 or ∆−1
2 to every code word produces at each step

a word starting and ending with complement letters a and ā.

Proposition 17 The follwing set is a convenient code for ∆2(W ) = W,

C2 = {22, 11, 2112, 2121, 212212, 21221121, 1221, 1212, 121121, 12112212}.

Proof. First, a direct examination shows that C2 is a prefix code. Now, let v

be an element of C2. Then by definition we have

∆−2
11 (v) = 1w2, ∆−2

12 (v) = 1x2, ∆−2
22 (v) = 2y1, ∆−2

21 (v) = 2z1,

for some w, x, y, z ∈ Σ∗. By construction ∆−1
a (v) = aqā with a ∈ Σ and if

v = v1v2 · · · vn then n must be even in order to have a word starting with
the letter a and ending with the letter ā. Now, ∆−2

ab (v) = ∆−1
a (bxb̄) = awā,

and by the same parity argument the word bxb̄ must have even length. But
|bxb̄| = |∆−1

b v| = 2|v|2 + |v|1 and then the number of 1’s in v must be even.

To summarize C2 is a finite set of even-length words having an even number of
1’s constructed as follows. First, 22 and 11 are of even length with an even num-
ber of 1’s and therefore belong to C2. The factors 21 and 12 are of even length
but odd number of 1’s. The only trouble is if 21 or 21 can be right extended by
a sequence of words of even length and odd number of 1’s. For example 2122,
212211 is the beginning of such a sequence. But the next step is 21221122 which
is not in F (K) because ∆(∆(21221122)) = ∆(11222) = 23. Thus the set C2 is
finite. The factor 21 can be extended to give {2112, 2121, 212212, 21221121}
and the factor 12 by {1221, 1212, 121121, 12112212}. 2

The substitution associated with the convenient code C2 is

∆−2
21 (22)= ∆−1

2 (1122) = 212211

∆−2
21 (11)= ∆−1

2 (12) = 211

∆−2
21 (2112)= ∆−1

2 (112122) = 212212211
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∆−2
21 (2121)= ∆−1

2 (112112) = 21221211

∆−2
21 (212212)= ∆−1

2 (1121122122) = 212212112212211

∆−2
21 (21221121)= ∆−1

2 (112112212112) = 21221211221221211

∆−2
21 (1221)= ∆−1

2 (122112) = 211221211

∆−2
21 (1212)= ∆−1

2 (122122) = 2112212211

∆−2
21 (121121)= ∆−1

2 (12212112) = 211221221211

∆−2
21 (12112212)= ∆−1

2 (122121122122) = 2112212212112212211

This ten rules substitution yields the fixpoint ∆−2
21 K21 = K21 factorizing over

C2 as

K21 = 212212 · 11 · 22 · 1221 · 121121 · 22 · 11 · 2112 · · · .

The whole construction of Φ(K21) = (21)ω is summarized now

∆−2
21 (K21) = K21 = 212212112212211 · 211 · 212211 · 211221211 ·

211221221211 · 212211 · 211 · 212212211 · · ·

∆−1
1 (K21) = ∆(K21)= 1121122122 · 12 · 1122 · 122112 · 12212112 · 1122 ·

12 · 112122 · · ·

K21 = ∆2(K21)= 212212 · 11.22 · 1221 · 121121 · 22 · 11 · 2112 · · ·

The substitution associated with the operator ∆−2
12 is obtained in a similar

way and is left to the reader.

For n ≥ 3, the same method can be applied but the problem remains to prove
that the minimal set of words Cn is finite. For example, the definition imposes
that each word w of C3 is of even length, contains an even number of 1’s and
also has an even number of 1’s in odd positions (consequently an even number
of 1’s in even positions). Using these facts the construction of a finite set of
words is not guaranteed. In fact, showing that Cn is finite for all n is equivalent
to show that the language of the smooth words is equal to the language of K,
which is still a conjecture.
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