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Abstract

Efficient analysis of solar photovoltaic (PV) system performance demands pro-
cessing large-scale environmental data while preserving critical trends for energy pre-
diction. This study proposes Graph-Oriented Information Fusion (GOIF), a novel
data reduction framework that employs graph-based community detection to identify
representative days for solar PV performance analysis. GOIF constructs a graph with
days as nodes and Euclidean-based similarities as edges, integrating daily average ir-
radiance and temperature to capture their combined impact on PV energy output.
Using Louvain modularity, it clusters days into communities and applies PageRank
to select one representative day per community. GOIF represents annual data using
a few days with a 1.5% error in energy yield approximation versus 7.31% for k-means
while improving cluster stability (measured by standard deviation) and reproducib-
ility. This approach reduces computational complexity without sacrificing accuracy,
achieving a robust representation of yearly PV performance.

This study establishes GOIF as a robust and efficient data reduction tool for
PV performance analysis, enhancing computational efficiency and decision making.
Future work could focus on refining GOIF’s ability to optimize data storage and
retrieval, further improving its utility for long-term solar energy applications.
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1. Introduction

Temperature and solar irradiance are critical factors influencing solar PV perform-
ance [1, 2]. Irradiance directly determines the electrical energy generated by PV panels,
while temperature affects panel efficiency [3], with variations driven by cloud cover, sea-
sonality, and geographic location [4]. Analyzing these factors over a full year generates
terabytes of data, posing significant computational challenges for PV system studies [5].
Processing such large datasets is resource-intensive, time-consuming [6], and often unne-
cessary for capturing essential weather patterns, making data reduction a vital strategy
for efficient analysis [7].

Reducing year-long temperature and irradiance data to a manageable subset of repres-
entative days can accelerate computations while preserving key insights into weather-driven
PV behavior [8]. A full year’s data may provide a broad overview but can obscure crit-
ical details within specific temporal segments, such as peak irradiance periods, extreme
weather events, or seasonal shifts [9]. By selecting representative days that capture these
variations, data reduction enables focused analysis with significantly less computational
overhead [10], freeing up resources for other tasks like system optimization or trend ana-
lysis. Moreover, storing terabytes of data is costly and cumbersome [11], whereas reduced
datasets are more manageable, cost-effective, and accessible for long-term use, especially
for PV plants handling extensive historical records [12]. Existing data reduction tech-
niques vary in effectiveness. Typical Meteorological Year (TMY) analysis [13] creates a
statistical “average” year from historical data but may miss local microclimates. Extreme
Value Analysis (EVA) focuses on maximum or minimum conditions to study system stress,
often overlooking frequent “normal” weather patterns [14]. Clustering, however, offers a
more comprehensive approach by grouping similar days to retain both typical and extreme
weather patterns [15].

The selection of representative days is also a well-established strategy to reduce compu-
tational complexity in energy system modeling, particularly for systems with high shares
of intermittent renewables such as solar PV [16]. Traditional approaches often rely on
clustering algorithms, with k-means and k-medoids being among the most widely used due
to their simplicity and effectiveness in capturing the main patterns of time series data [17].
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However, k-means’ assumption of spherical clusters may not suit complex weather data,
which often exhibits irregular and highly variable structures [18]. More recent studies have
explored optimization-based methods [19] to improve the representativeness of selected
days, balancing accuracy and computational cost [20]. Frameworks that incorporate met-
eorological features and hybrid techniques have also been proposed to better account for the
variability and interdependencies inherent in renewable energy datasets [21] [22]. Despite
these advances, existing methods primarily focus on distance-based or optimization-based
selection, and few have addressed the underlying structure of temporal data using graph-
based community detection [23].

In this paper, we introduce Graph-Oriented Information Fusion (GOIF), a novel data
reduction method designed to minimize information loss in PV weather analysis. GOIF
leverages temperature and irradiance data through a graph-based framework, representing
days as nodes and weather similarities as edges. Using Louvain community detection,
GOIF identifies distinct weather patterns and selects 10 representative days that preserve
the dataset’s diversity, ensuring both typical and extreme conditions are captured. This
method groups days into communities based on shared weather characteristics, such as
high summer irradiance or low winter temperatures, and uses PageRank to select the most
central day per community, reflecting the core pattern of each cluster. This approach
represents one year in 10 days—a 97% data reduction—while maintaining a low 1.5% error
in energy yield approximation, as validated on the INES 2022 dataset (Section 4). GOIF’s
graph structure ensures comprehensive pattern capture, avoiding the oversimplification of
TMY or EVA, and its mathematical framework guarantees robustness and reproducibility
for large-scale PV data analysis, making it ideal for handling extensive weather datasets.

GOIF outperforms traditional methods like k-means in preserving weather information
with minimal data. Over 100 runs without a fixed seed, GOIF consistently selects the same
representative days with higher frequency, demonstrating superior stability (Table 3). It
also achieves a lower intra-cluster standard deviation (σ̄I) than k-means, indicating tighter,
more cohesive clusters that better represent weather patterns (Table 1). This improved
clustering quality ensures that the selected days more accurately reflect the dataset’s vari-
ability, from summer peaks to winter lows. GOIF also provides better temporal distribu-
tion, capturing diverse patterns across the year (Fig. 1), with a 1.5% error in energy yield
approximation compared to k-means’ 7.31%, random selection’s 14.03%, and equiparti-
tion’s 8.65% error (Table 4). This low error underscores GOIF’s ability to retain critical
weather information, enabling efficient computations for PV analysis tasks like performance
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modeling, long-term trend studies, or system design optimization. By drastically reducing
data volume, GOIF minimizes computational demands, making it a scalable solution for
handling extensive PV weather datasets with high fidelity. To the best of our know-
ledge, the application of graph-oriented information fusion for representative day selection
in solar PV performance analysis has not been previously reported. By leveraging graph
communities, our approach captures complex relationships and temporal dependencies that
conventional clustering and optimization methods may overlook, offering a significant ad-
vancement for accurate and interpretable PV modeling. This paper makes the following
contributions to the field of solar PV weather data analysis:

1. Novel Graph-Based Data Reduction Framework: We introduce Graph-Oriented
Information Fusion (GOIF), a method that leverages graph-based community detec-
tion and PageRank to select representative days, reducing annual weather data by
over 97% while maintaining a low 1.5% error in PV energy yield approximation.

2. Improved Clustering Stability and Reproducibility: GOIF demonstrates su-
perior stability over k-means, consistently selecting the same representative days
across multiple runs, enhancing reliability for long-term PV performance analysis.

3. Enhanced Weather Pattern Capture: By modeling days as nodes and weather
similarities as edges, GOIF captures diverse weather patterns (e.g., seasonal peaks
and lows) more effectively than centroid-based methods like k-means, as validated
by lower intra-cluster standard deviation and better temporal distribution.

4. Scalable and Efficient Analysis: GOIF reduces computational complexity, en-
abling efficient processing of large-scale PV weather datasets for applications like
performance modeling and system optimization, with practical validation on the
INES 2022 dataset.

The remainder of this paper is organized as follows: Section 2 provides a detailed
methodology encompassing both the K-means algorithm and our proposed GOIF approach.
Section 3 describes the sources of the data utilized in this study. Section 4 presents a
comprehensive discussion of the results obtained from both approaches, accompanied by
a qualitative analysis. Section 5 offers the conclusions drawn from our study and outlines
potential directions for future research.
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2. Methodology for GOIF

This section outlines a two-step methodology to identify representative weather pat-
terns from year-long temperature (T ) and irradiance (Q) data, encompassing our proposed
Graph-Oriented Information Fusion (GOIF) with the k-means algorithm. Initially, we use
a weather-only dataset, comprising 365 days of hourly T and Q measurements from a
meteorological station, without any solar PV-specific data. In the first step, daily feature
vectors are constructed by calculating statistical summaries (e.g., mean, standard devi-
ation) of T and Q, followed by normalization and fusion into a unified representation. The
second step applies clustering to select 10 representative days based on weather similarity.
GOIF constructs a graph of days, uses the Louvain community detection to form clusters,
and selects representatives via PageRank, while k-means employs centroid-based grouping.

2.1 Information Fusion

This subsection outlines the feature extraction and fusion process applied to a weather-
only dataset of hourly temperature (T ) and irradiance (Q) measurements over N days,
sourced from a meteorological station, without PV energy data. For each day i, we derive
statistical features from M hourly records to construct a feature vector fi, summarizing
daily weather profiles. These features include mean (µ), standard deviation (σ), minimum
(min), maximum (max), and quartiles (Q1, Q2, Q3) for both T and Q.

The mean (µ) serves as a fundamental measure of the central tendency, representing the
average value of all observations within a data set. For the i-th day with M observations
{xk}Mk=1, the mean is calculated as:

µi
x =

∑M
k=1 xk

M
.

This is calculated for both temperature and irradiance, resulting in {µi
T , µ

i
Q} for each

day.
The standard deviation (σ) quantifies the variability or dispersion of the data around

the mean. A larger standard deviation indicates a wider spread within the dataset, while
a smaller value suggests that the data points cluster closer to the mean. The standard
deviation is calculated as the square root of the variance (σ2), which is calculated as:

(
σi
x

)2
=

∑M
j=1(xj − µi)

2

M
.
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For temperature and irradiance, this is expressed as:

σi
T =

√√√√ 1

M

M∑
j=1

(T i
j − µi

T )
2 and σi

Q =

√√√√ 1

M

M∑
j=1

(Qi
j − µi

Q)
2.

The minimum (min) and maximum (max) values provide essential insight into the
spread of the data and potential outliers. For the i-th day, we record mini

T , maxiT , mini
Q,

and maxiQ, which represent the lowest and highest values for temperature and irradiance,
respectively. These values are particularly useful for identifying extreme weather events or
seasonal variations.

Quartiles divide the dataset into four equal parts, offering a robust summary of the
data distribution. For the i-th day, we calculate the first, second and third quartiles for
temperature and irradiance: Q1,i

T , Q2,i
T , Q3,i

T and Q1,i
Q , Q2,i

Q , Q3,i
Q . The interquartile range

(IQR), defined as the distance between Q1 and Q3, indicates the spread of the data around
the median (Q2). Data points outside this range are considered potential outliers.

Combining these features, we construct a high-dimensional feature vector fi for the i-th
day:

fi =

[
µi
T , σ

i
T ,

i

min
T

,
i

max
T

, Q1,i
T , Q2,i

T , Q3,i
T , µi

Q, σ
i
Q,

i

min
Q

,
i

max
Q

, Q1,i
Q , Q2,i

Q , Q3,i
Q

]
The initial dataset contained 14 meteorological features, but we reduced it to four key
metrics—mean temperature (meanT), mean irradiance (meanQ), temperature standard
deviation (stdT), and irradiance standard deviation (stdQ)—forming F ∈ RN×4. Other
features were excluded as they are derived metrics highly correlated with mean and std,
introducing redundancy and multicollinearity, which could lead to overfitting and reduced
clustering stability. Additionally, these derived statistics are less robust to outliers and
noise in the dataset, potentially misrepresenting daily irradiation patterns under variable
weather conditions. We reduce the feature vector to:

fi = [µi
T , σ

i
T , µ

i
Q, σ

i
Q] ∈ R4

The low-dimensional case was retained because these four features effectively capture the
central tendency and variability of temperature and irradiance—critical drivers for solar
PV performance—while maintaining computational efficiency and interpretability.
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2.2 Feature Normalization

Following feature extraction, a feature matrix F ∈ RN×d is constructed from all feature
vectors fi, where N is the number of days and d is the number of features. To ensure
that all features contribute equally to the clustering process, the feature matrix is normal-
ized using five different normalization techniques—Standard, Min-Max, Robust, Maximum
Absolute, and Quantile Transformer—tested for both GOIF and k-means, with optimal
selection evaluated in Section 4. Without normalization, features with larger scales (e.g.,
temperature in °C) could dominate features with smaller scales (e.g., irradiance in W m−2),
skewing distance-based clustering. In Standard normalization, each feature j is scaled to
zero mean and unit variance:

F′
j =

Fj − µj

σj

where µj and σj are the mean and standard deviation of column j. Min-Max normalization
maps features to [0, 1]:

F′
j =

Fj −min(Fj)

max(Fj)−min(Fj)

Robust normalization uses median and interquartile range (IQR) to mitigate outliers:

F′
j =

Fj − median(Fj)

IQR(Fj)

Maximum Absolute normalization scales by the maximum absolute value, yielding [-1, 1]:

F′
j =

Fj

max(|Fj|)

Quantile Transformer normalization enforces a uniform distribution:

F′
j = Qunif

(
QFj

(Fj)
)

where QFj
is the empirical cumulative distribution function (CDF) and Qunif is the uniform

quantile function.
The normalized matrix F′ ensures consistent feature influence, enabling accurate Euc-

lidean distance calculations for GOIF’s graph construction and k-means clustering in the
subsequent step.
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2.3 Weather Profile Clustering

Following feature normalization, this subsection outlines the clustering of days with
similar weather profiles using the normalized feature matrix F′ ∈ RN×4. Two approaches
are employed to group days based on their weather characteristics. The first utilizes the
k-means algorithm, a partitioning method that assigns days to clusters by minimizing
distances to iteratively updated centroids. The second implements Graph-Oriented In-
formation Fusion (GOIF), a graph-based method that models days as nodes and pairwise
Euclidean distances as edges, leveraging community detection to identify weather pattern
clusters.

2.3.1 K-means Clustering

K-means clustering partitions the normalized feature matrix F′ ∈ RN×4 into K =

10 clusters to identify days with similar weather profiles [24]. This established method
iteratively minimizes the within-cluster sum of squared Euclidean distances:

J(F′, S) =
K∑
k=1

∑
i∈Sk

∥f ′i − µk∥2

where Sk is the k-th cluster, µk is its centroid, and ∥·∥2 denotes squared Euclidean distance.
The process initializes K centroids {µ1, µ2, . . . , µK} randomly from F′. Each day i is

assigned to cluster Sk with the nearest centroid:

Sk = {i | k = argmin
k′

∥f ′i − µk′∥2}

followed by updating each centroid as the mean of assigned points:

µk =
1

|Sk|
∑
i∈Sk

f ′i

where |Sk| is the number of days in Sk. These steps repeat until convergence, defined
by centroid shifts below a threshold ϵ = 10−4.

For each cluster Sk, a representative day rk is selected as the point closest to the
centroid:

rk = argmin
i∈Sk

∥f ′i − µk∥2

capturing the cluster’s typical weather profile (mean and variability of temperature and
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Algorithm 1: K-means Clustering for Weather Profiles
Input: F′ ∈ RN×4, number of clusters K = 10
Output: Centroids {µk}, representatives {rk}

1 begin
2 Randomly initialize centroids {µk}Kk=1 from F′;
3 repeat
4 for each f ′i do
5 Assign to cluster Sk where k = argmink′ ∥f ′i − µk′∥2;
6 for each cluster Sk do
7 Update µk =

1
|Sk|

∑
i∈Sk

f ′i;

8 until centroid shift < ϵ = 10−4;
9 for each cluster Sk do

10 Select rk = argmini∈Sk
∥f ′i − µk∥2;

irradiance). Algorithm 1 details the steps for this algorithm.

2.3.2 Graph-Oriented Information Fusion (GOIF)

Graph-Oriented Information Fusion (GOIF) is a novel clustering method designed to
partition the normalized feature matrix F′ ∈ RN×4 into desired number of communities
(present study utilizes 10 communities), each representing days with similar weather pro-
files based on temperature and irradiance features [25]. In contrast to k-means, which
relies on centroid-based partitioning, GOIF employs a graph-based approach to model re-
lational structures within the data. Here, days are represented as nodes in an undirected
graph, and edges connect days with comparable weather characteristics, derived from F′.
Community detection then identifies clusters where intra-community connections exceed
inter-community links, corresponding to distinct weather patterns such as prolonged sunny
or overcast periods [26].

The GOIF process comprises three steps. First, a graph is constructed using the k-
nearest neighbors (k-NN) method to establish edge connections based on Euclidean dis-
tances. Second, the Louvain algorithm maximizes modularity to detect 10 communities
within the graph. Third, a representative day is selected from each community using
PageRank for subsequent analysis. These steps are detailed below, with performance com-
pared to k-means in Section 4.

Graph Construction for Community Detection
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An undirected graph G = (V , E) is constructed to represent N days as nodes V =

{v1, v2, . . . , vN}, with edges E encoding weather profile similarity derived from F′ ∈ RN×4.
For each node vi, the k-nearest neighbors (k-NN) method [27] identifies the k days with
the smallest Euclidean distances:

di,j = ∥f ′i − f ′j∥2

where f ′i is the feature vector of day i, and ∥ · ∥2 denotes the L2 norm. Edges are
assigned as:

Ei,j =

1 if vj ∈ Ni(k) or vi ∈ Nj(k)

0 otherwise

where Ni(k) is the set of k nearest neighbors of vi. The graph is undirected, so Ei,j = Ej,i,
and a node’s degree may exceed k due to mutual neighbor selections. The parameter k is
user-defined; in this study, we have used k = 10 to balance connectivity and sparsity.

Louvain Modularity Maximization

The Louvain Modularity Maximization algorithm [28] is a widely adopted and efficient
method for community detection in large networks [29]. It detects communities in the
graph G by maximizing modularity, partitioning N nodes into clusters reflecting distinct
weather patterns. The algorithm begins by assigning each node to its own community.
It then calculates the potential gain in modularity for each node if moved to a different
community of its neighbors. Modularity Ω, a quantitative measure of community quality,
is defined as

Ω =
1

2M

∑
i,j

[
Ai,j − γ

kikj
2M

]
δ(ci, cj)

where M is the total edge count, Ai,j is the adjacency matrix (1 if nodes i and j are
connected, 0 otherwise), ki is the degree of node i, γ = 1 is the resolution parameter,
and δ(ci, cj) is 1 if nodes i and j share a community, 0 otherwise. The term within square
brackets represents the difference between the actual number of edges between communities
and the expected number based on the degree distribution. By maximizing Ω, the algorithm
creates communities with high internal edge density and relatively few inter-community
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edges, effectively partitioning the graph into clusters that reflect distinct weather patterns
within the data. The algorithm relocates the node with the highest potential modularity
gain to the community that maximizes this gain and repeats these steps iteratively until
no further improvement in modularity can be achieved.

Selection of Representative Days

In our study, we used the PageRank algorithm to exploit the inherent structure of the
constructed similarity graph G. Within each of the 10 communities in G, the PageRank
algorithm [30] selects a representative day by analyzing the graph’s connectivity. Ad-
apted from directed graph applications, PageRank assigns each node vi a score PR(i)

in the undirected similarity graph G, identifying days central to their weather pattern
community. Unlike centroids averaging features, PageRank emphasizes connectivity using
random walk [31]. it ensures days linked to many others, like hubs in a network, score
higher. The score PR(i) is computed iteratively:

PR(i) =
1− α

N
+ α

∑
j∈Ni

PR(j)

deg(j)

where N is the total days, α = 0.85 is the damping factor, Ni is vi’s neighbors, and
deg(j) is vj’s degree. This splits into two parts: (1−α)/N gives every day a small base score
(e.g., 0.15/N if α = 0.85), ensuring all contribute slightly; the sum α

∑
j PR(j)/ deg(j)

adds a share of each neighbor’s score, scaled by their connections—busy neighbors boost vi
more. Iterating until stable, the highest PR(i) per community marks the representative,
capturing a key weather profile (e.g., a standout sunny day). Algorithm 2 details this
process.

This method enhances selection by prioritizing relational importance over averages,
reflecting dominant weather conditions like persistent heat or cloudiness. PageRank’s
k-NN-derived edges tie scores to weather similarity, offering interpretable centrality for
analysis.

3. Dataset Description

This study employs two datasets to evaluate weather profile clustering and PV perform-
ance: a weather-only dataset and a PV-specific dataset. Both are available upon request,
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Algorithm 2: Graph-Oriented Information Fusion (GOIF) Clustering
Input: F′ ∈ RN×4, normalized feature matrix; k, number of neighbors; K = 10,

number of communities
Output: Representative days {rk} for K communities

1 // Construct Undirected Graph;
2 Initialize V = {v1, v2, . . . , vN};
3 Initialize E = ∅;
4 for each vi ∈ V do
5 Compute di,j = ∥f ′i − f ′j∥2 for all vj ∈ V ;
6 Set Ni(k) as k nodes with smallest di,j;
7 for each vj ∈ Ni(k) do
8 Ei,j = Ej,i = 1;

9 Set G = (V , E);
10 // Louvain Community Detection;
11 Assign each vi to its own community ci = i;
12 while modularity Ω increases do
13 for each vi ∈ V do
14 Move vi to neighbor’s community maximizing Ω;

15 if no moves occur then
16 Break;

17 Merge into K = 10 communities;

18 // PageRank Selection;
19 Initialize PR(i) = 1/N for all vi;
20 while maxi |PRnew(i)− PR(i)| > ϵ = 10−4 do
21 for each vi ∈ V do
22 PRnew(i) =

1−α
N

+ α
∑

j∈Ni

PR(j)
deg(j)

, where α = 0.85;

23 Update PR(i) = PRnew(i);

24 for each community ck, k = 1 to K do
25 rk = argmaxi∈ck PR(i);

with the code accessible online.
Weather data is sourced from the French Ministry of Ecological Transition’s RT-RE-

bâtiment platform, which is compliant with 2012 thermal regulations for building energy
performance. Available at RT-RE-bâtiment, it covers France’s eight H-class climate zones
(e.g., H1a), reflecting diverse conditions. Hourly air temperature (°C) and normal irra-
diance (W/m²) are extracted for 365 days, forming daily feature vectors F′ ∈ RN×4 as
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described in Section 2.1.
PV data is collected from an 8-module string at the Institut National de l’Énergie Solaire

(INES), Le Bourget-du-Lac, France (45.643958°N, 5.875885°E, 233 m elevation). Facing
south with a 30° tilt, the string has a rated power of 2708.56 Wp. The dataset includes
hourly average temperature (°C), irradiance (W/m²), and DC energy output (Wh) over
one year, enabling validation of representative days against energy yield.

The complete codebase, implementing GOIF and k-means clustering, is publicly avail-
able at GitHub.

4. Results and Discussion

This section assesses the clustering performance of k-means and Graph-Oriented In-
formation Fusion (GOIF) across five normalization techniques (Section 2.2), using the
weather-only dataset and annual PV energy yield dataset (Section 3). Cluster quality is
evaluated via the Average Intra-Cluster Standard Deviation (σ̄I), with representative day
selection and stability analyzed to compare GOIF’s effectiveness against k-means. A lower
σ̄I indicates tighter, more cohesive clusters. The metric is computed in three steps:

1. Standard Deviation within Each Cluster (σ): For each cluster k, the standard
deviation of both temperature, Ti, and irradiance, Qi, is computed:

σk,T =

√∑Nk

i=1(Tij − Tk)2

Nk − 1
, σk,Q =

√∑Nk

i=1(Qij −Qk)2

Nk − 1
.

Here, k denotes the cluster index, and Nk represents the number of days within
cluster k. Tij and Qij represent the temperature and irradiance values for a day i

in the cluster k, respectively, while Tk and Qk represent the mean temperature and
mean irradiance within the cluster k, respectively.

2. Intra-Cluster Standard Deviation (σI): The intra-cluster standard deviation for
the cluster k is then calculated by averaging the standard deviations of temperature
and irradiance:

σI,k =
σk,T + σk,Q

2
.

13

https://github.com/Srijani96/Representative-days-using-graph-oiented-information-fusion


Method Standard Min-max Robust Maxabs Quantile

K-means 0.316 0.072 0.212 0.074 0.081
GOIF 0.273 0.065 0.184 0.066 0.083
Table 1: Average intra-cluster standard deviation for different normalization techniques

3. Average Intra-Cluster Standard Deviation (σ̄I): Finally, to determine the op-
timal normalization technique, we calculate the average intra-cluster standard devi-
ation across all features and clusters:

σ̄I =

∑K
k=1 σI,k

K
,

where K represents the total number of clusters. A lower value of σ̄I indicates
tighter groups with smaller variations within each group, reflecting a more effective
normalization technique for the community detection process.

For this study, the parameters for GOIF that we use are K = 10, k = 10 and γ = 0.85.

Impact of Normalization on σI

Our evaluation based on intra-cluster standard deviation in Table 1 reveals that Min-
max normalization consistently achieves the lowest values in both the K-means and the
GOIF approach. This finding suggests that scaling all features to a common range between
0 and 1 using Min-Max normalization may lead to more well-defined weather communities.
During community detection algorithms, features with larger scales can dominate the dis-
tance calculations used to group similar days. Min-max normalization mitigates this effect
by transforming both temperature and irradiance data to the same range, effectively giving
them equal weight in the clustering process. This leads to a more balanced consideration
of both weather aspects when forming weather communities, resulting in tighter clusters
with lower values of σI .

Performance of K-means vs. Graph Community Detection

The results indicate that the graph-based community detection algorithm consistently
produces lower σI values compared to K-means clustering, except for quantile normaliz-
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ation, as shown in Table 1. This suggests that the graph-based approach, which takes
advantage of the inherent structure of the data by representing days as nodes and similar-
ities as edges, is better suited for capturing the underlying relationships between weather
profiles. This can be attributed to the ability of graph-based methods to identify non-
spherical clusters, which are more representative of the complex relationships present in
the weather data. K-means, on the other hand, assume spherical clusters, potentially
leading to suboptimal partitioning when dealing with more intricate data structures.

Effectiveness of GOIF for Selecting Representative Dates

Panels (a) and (b) of Figure 1 represent the distribution of temperature and irradi-
ance for year-long weather data, respectively. The red dots represent the days chosen by
K-means, followed by the centroid, and the blue dots represent the days chosen by our
proposed GOIF method. The distribution of temperature and irradiance for represent-
ative days chosen by GOIF, marked with blue dots, exhibits a more distinct separation
between clusters and better captures the seasonal trends compared to the centroid-based
selection. Panels (a) and (b) of Figure 2 illustrate the daily irradiation curves for the 10
clusters identified by GOIF and k-means, respectively, using Min-Max normalization. Each
subplot shows the average hourly irradiance (grey) for all days in a cluster, overlaid with
the irradiance curve of the representative day selected by the respective method (blue for
GOIF, red for k-means). Clusters are ordered by mean irradiance, from lowest (top-left)
to highest (bottom-right). GOIF’s representatives align more closely with cluster averages,
capturing seasonal and daily variations effectively, with the GOIF irradiance pattern being
particularly close to the average, especially for the low irradiance clusters. This enhanced
alignment for low irradiance conditions is crucial, as it allows for more accurate represent-
ation of low performance by the solar panels, which is essential for assessing efficiency and
energy yield under suboptimal weather conditions.

This can be explained by the nature of GOIF. Unlike the K-means centroid, which
simply represents the average feature vector of a cluster, GOIF utilizes the concept of
PageRank within the constructed graph to identify data points with higher connectivity
and influence within their respective communities. These influential data points, chosen
as representatives, have a higher likelihood of reflecting the core characteristics of their
corresponding weather patterns.
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(a)

(b)

Figure 1: Distribution of Temperature (a) and Irradiance (b) for year-long data with the
representative days marked by the dots. Red dots are chosen by K-means with centroid,
and blue dots are chosen using our proposed GOIF method.

Stability and Reproducibility

To assess the stability and reproducibility of both methods, we ran each method 100

times on the same data set without any fixed seed. For each run, we recorded the chosen
representative days. Subsequently, we identified the 10 most frequently chosen represent-
ative days for each method. The results of this analysis are presented in Table 2, which
illustrates the frequency of selection for the top 10 representative days identified by the
K-means and GOIF methods. Figure 3 illustrates our findings, with panel (a) showing
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(a)

(b)

Figure 2: Daily irradiation curves for the 10 clusters identified by (a) GOIF and (b) k-
means, using Min-Max normalization. Each subplot shows the average hourly irradiance
(grey) and the representative day’s curve (blue for GOIF, red for k-means), ordered by
mean irradiance from lowest (top-left) to highest (bottom-right).

the frequency distribution of the 10 most chosen representative days using the K-means
method and panel (b) showing the same for the GOIF method. The results reveal a not-
able difference in the consistency of day selection between the two methods. The GOIF
method demonstrates a higher frequency of selecting the same days as representatives
across multiple runs compared to the K-means method. This higher consistency in the
GOIF method suggests a greater likelihood of reproducing similar results across numer-
ous iterations. Table 3 presents the mean and standard deviation of the frequency with
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Day 14 118 121 180 195 252 278 336 343 362
K-means Frequency 39 61 36 69 74 61 80 74 37 100

Day 63 130 165 232 247 301 310 338 347 355
GOIF Frequency 97 51 100 33 72 99 74 94 86 52

Table 2: Frequency of K-means and GOIF representative days chosen over 100 runs

K-means Mean 63.1
STD 20.88

GOIF Mean 75.8
STD 23.66

Table 3: Mean and standard deviation (STD) of frequency of representative days

which representative days were selected by both the K-means clustering method and GOIF
approach over 100 iterations. The temperature and irradiance distribution presented in
Figure 1 and Figure 2 are derived from a single run of GOIF and k-means using Min-
Max normalization, which yielded the lowest average intra-cluster standard deviation (σ̄I ,
Table 1). This run was selected to ensure optimal clustering performance. The stability
of representative day selection across 100 runs without a fixed seed is separately evaluated
in Tables 2 and 3. The results clearly indicate that the mean frequency of representative
days chosen by the GOIF method is substantially higher compared to that of the K-means
clustering algorithm. This suggests that our proposed GOIF approach is more likely to
consistently identify the same representative days across different runs on the same dataset.
In contrast, the K-means method exhibits greater variability in the selection of represent-
ative days, as evidenced by the lower mean frequency values. The enhanced reproducibility
of the GOIF method can be attributed to its graph-based approach, which captures the in-
herent structure and relationships within the data more effectively than the centroid-based
K-means algorithm. Using community detection algorithms along with PageRank meas-
ures, GOIF appears to identify more stable and representative patterns in the temporal
data. This increased stability and reproducibility of the GOIF method have significant
implications for long-term data analysis in solar PV applications. In contrast, the lower
consistency observed in the K-means method highlights its sensitivity to initial centroid
placement and the potential for converging to different local optima in different runs. While
K-means remains a valuable clustering technique, its variability in selecting representative
days may introduce uncertainties in long-term analyses. The superior reproducibility of
the GOIF method underscores its potential as a more reliable approach for identifying
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(a)

(b)

Figure 3: Frequency of ten most frequent representative days chosen by (a) K-means and
(b) GOIF method.

representative days in weather data analysis for solar PV performance modeling.
Figure 4 illustrates the distribution of the graph community within the dataset of a year,

employing various normalization techniques. In this representation, each node symbolizes
a day of the year, with edges connecting these nodes. Nodes exhibiting similarity are
placed close to each other, and the edges connecting them are correspondingly short. The
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(a) (b)

(c) (d)

(e)

Figure 4: Community structure of annual weather data using different normalization tech-
niques. Each node represents a day, with edges connecting similar days based on Euclidean
distances. Colors denote distinct communities identified by the Louvain algorithm. Sub-
figures show: (a) Standard Normalization, (b) Min-Max Normalization, (c) Maximum
Absolute Normalization, (d) Robust Normalization, (e) Quantile Transformer Normaliza-
tion.

20



Figure 5: Pearson Correlation matrix heatmap of the features in F

community structure within the data set is visually delimited by color coding. Nodes
belonging to the same community are assigned identical colors, facilitating the identification
of distinct groups or clusters of days that share similar characteristics. This color-based
differentiation allows for immediate visual recognition of community boundaries and the
overall community structure within the annual data. This graphical representation serves
as a powerful tool for identifying temporal patterns, seasonal effects, and other cyclical
phenomena within the year-long dataset. It provides a clear, intuitive visualization of the
complex relationships and groupings present in the data, as well as valuable information
on the underlying structure of the annual measurements.

Comparison of yearly energy yield

21



Method Eest (kWh) Eact (kWh) Error (%)
GOIF 4108.90 4171.65 1.5
k-means 3867.06 4171.65 7.31
Random (avg.) 3586.35 4171.65 14.03
Equipartition 3810.92 4171.65 8.65
Table 4: Energy Yield Estimation Error (INES 2022)

Graph-Oriented Information Fusion (GOIF) is evaluated for solar PV yield estimation
using 2022 data from an 8-module PV string (2708.56 Wp) at INES, Le Bourget-du-Lac,
France (Section 3). The dataset provides hourly temperature, irradiance, and DC energy
output (Wh), yielding an actual annual energy, Eact = 4171.65 kWh, after excluding faulty
and missing data (≈ 7days). Figure 5 presents the correlation matrix heatmap for the
four features in F (mean temperature, mean irradiance, temperature standard deviation,
and irradiance standard deviation), derived from the dataset. This heatmap shows the
positive correlation between temperature and irradiance as a whole, highlighting their
interdependent nature. This underscores the need to study these features simultaneously
to accurately capture the meteorological dynamics influencing daily energy yield. GOIF
(K = 10, k = 10) selects 10 representative days (indices: 18, 53, 103, 134, 195, 244, 246,
284, 313, 334) weighted by community sizes (wi). K-means (K = 10) selects days (198,
53, 94, 176, 207, 216, 225, 280, 324, 347) with cluster sizes, while random selection (10
runs) and equipartition (every 36 days) use wi = 35.8 (358/10). We utilized Min-Max
normalization to produce optimized clusters as indicated in our previous study [32].

The estimated annual energy yield Eest is calculated as:

Eest =
10∑
i=1

wiei

where ei is the measured daily yield (Wh) of representative i, and
∑

wi ≈ 358. For
GOIF and k-means, wi reflects the number of days in each community or cluster, varying
based on weather similarity. Random selection picks 10 days per run (e.g., indices 5, 42,
89, etc.), repeating 10 times to average Eest, with each day’s yield weighted by wi = 35.8

to approximate the 358-day total. Equipartition selects days at fixed 36-day intervals (e.g.,
0, 36, 72, . . . , 324), assigning wi = 35.8 to evenly distribute the year’s span. The error
quantifies accuracy:
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Figure 6: Irradiance distribution at 12 noon (INES 2022), with representative days chosen
by GOIF (blue) and k-means (red).

Method Cluster Sizes MAE RMSE
GOIF [35, 25, 40, 42, 33, 40, 25, 46, 53, 19] 11.03 13.27
k-means [16, 33, 72, 29, 60, 32, 50, 48, 9, 9] 14.35 18.70

Table 5: Error in representing whole year from representatives (INES 2022)

Error =
|Eest − Eact|

Eact
× 100%

Table 4 shows GOIF’s Eest = 4108.90 kWh (1.5% error), outperforming k-means
(3867.06 kWh, 7.31%), random (3586.35 kWh avg., 14.03%), and equipartition (3810.92
kWh, 8.65%). Fig. 6 plots the irradiance during solar noon (12-noon) for the whole year,
with GOIF (blue) and k-means (red) representatives marked. GOIF’s days better capture
seasonal peaks (e.g., days near summer highs) and lows (e.g., days in winter), reflecting
diverse weather patterns, while k-means misses key variations (some days with different ir-
radiance dip). To strengthen the evaluation we calculated the Mean Absolute Error (MAE)
and Root Mean Square Error (RMSE) between the full year’s energy yield from the INES
2022 dataset and the reconstructed year using representative days selected by GOIF and
k-means. The reconstruction process assigned each day’s energy yield to the yield of its
nearest representative day, with cluster sizes varying due to the inherent partitioning of
the methods: GOIF clusters had sizes of [35, 25, 40, 42, 33, 40, 25, 46, 53, 19] days, while
k-means clusters exhibited sizes of [16, 33, 72, 29, 60, 32, 50, 48, 9, 9] days, reflecting their
differing approaches to grouping. Table 5 shows for GOIF, the MAE was 11.03 kWh and
RMSE was 13.27 kWh, indicating a close approximation to the full dataset. In contrast,

23



k-means showed a higher MAE of 14.35 kWh and RMSE of 18.70 kWh, suggesting greater
deviation. These time-resolved error metrics complement the aggregated PV output er-
rors, highlighting GOIF’s superior ability to capture daily yield variations across the year.
The lower errors for GOIF, particularly in its more balanced cluster sizes, underscore its
effectiveness in representing the full dataset’s temporal dynamics, especially under varying
irradiance conditions, including low-irradiance scenarios where accurate panel performance
assessment is critical. This demonstrates GOIF’s efficiency as a data reduction tool. By
representing the whole year in 10 days, GOIF reduces data volume over 97% while main-
taining a low 1.5% yield error highlights the precision. For computational tasks like energy
modeling, using GOIF’s 10 days instead of a full year minimizes error while significantly
scaling down data.

5. Conclusions and Future Research

This study advances weather pattern analysis for solar PV applications by developing
Graph-Oriented Information Fusion (GOIF) as a data reduction method, evaluated on
weather-only and PV-specific datasets (Section 3). Min-Max normalization proves optimal,
scaling temperature and irradiance to [0, 1] to achieve the lowest intra-cluster standard
deviation (σ̄I , Table 1). This ensures balanced feature representation, which is critical
for effective clustering in PV data analysis where weather variability drives computational
complexity.

A central finding is the enhanced capability of our proposed approach, the Graph-
Oriented Information Fusion (GOIF) method, over traditional k-means clustering. GOIF
significantly enhances data reduction efficiency compared to baseline models (such as k-
means clustering). By grouping one-year data to 10 weather-similar communities and
selecting high-connectivity representatives, GOIF reduces data volume by over 97% while
maintaining a low 1.5% error in energy yield approximation (Table 4). It captures di-
verse weather patterns, including seasonal peaks and lows (Fig. 6), outperforming k-means
(7.31% error), random selection (14.03%), and equipartition (8.65%). GOIF’s stability
over 100 runs (Table 3) further demonstrates its reliability in consistently selecting repres-
entative days, unlike k-means’s centroid-driven variability. This efficiency enables scalable
PV computations—e.g., using 10 days instead of a full year for energy modeling—without
significant loss in accuracy, as validated by the INES 2022 dataset (Section 4).

These findings position GOIF as a robust framework for weather data reduction in
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solar PV analysis. By compressing large datasets while preserving weather-driven energy
insights, GOIF supports efficient computational workflows, reducing processing demands
for tasks like performance modeling or system design. This data reduction approach en-
hances the scalability of PV data analysis, which is crucial for sustainable energy systems
handling extensive weather and energy datasets.

Future Research Directions

Future work can extend GOIF’s data reduction capabilities for broader PV applications.
Applying it to multi-year, multi-variate data or climate zones could test its robustness
across temporal and regional weather variations, ensuring consistent reduction accuracy.
Incorporating additional features—cloud cover, humidity, or PV-specific metrics (e.g., ef-
ficiency)—might improve clustering granularity, further minimizing data while retaining
critical patterns.

Integrating GOIF with machine learning (e.g., neural networks) could optimize repres-
entative selection, enhancing compression ratios for specific PV tasks like long-term trend
analysis [33, 34]. Exploring alternative graph algorithms (e.g., Graph Neural Networks)
or tuning parameters (k, γ) may refine reduction efficiency for varied datasets, such as
coastal vs. inland PV sites. Embedding meteorological rules (e.g., seasonal thresholds)
into GOIF could ensure that representatives align with physical phenomena, improving
the interpretability of PV data workflows.

These advancements could establish GOIF as a versatile data reduction tool, enabling
efficient analysis of large-scale PV datasets. By optimizing weather data compression, this
research supports scalable, data-driven insights for solar energy systems, contributing to
sustainable energy goals through enhanced computational efficiency.

6. Appendix: Mathematical Descriptions

This appendix provides detailed mathematical formulations of statistical measures and
normalization techniques used in the analysis of PV weather data. These methods are
foundational for clustering and data reduction, ensuring that temperature and irradiance
features are appropriately scaled and interpreted.

Mean
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The mean (µ) is a measure of central tendency, representing the average value of a
dataset. For a dataset with M observations {xk}Mk=1, such as daily irradiance values, the
mean is calculated as:

µ =
1

M

M∑
k=1

xk.

In PV analysis, the mean of irradiance or temperature over a year provides a baseline
for understanding typical weather conditions, aiding in the identification of representative
days.

Standard Deviation

The standard deviation (σ) quantifies the variability of data around the mean, which
is crucial for assessing weather pattern consistency in PV studies. It is the square root of
the variance (σ2):

σ =

√√√√ 1

M

M∑
k=1

(xk − µ)2,

where µ is the mean. A lower standard deviation, as achieved by GOIF (Table 1), indicates
tighter clusters, ensuring that selected days closely represent their weather patterns, which
is vital for accurate data reduction.

Quartiles

Quartiles divide a dataset into four equal parts, providing insights into the distribution
of weather data. The first quartile (Q1) is the 25th percentile, the second quartile (Q2)
is the median (50th percentile), and the third quartile (Q3) is the 75th percentile. The
interquartile range (IQR) is:

IQR = Q3 −Q1.

In PV weather analysis, quartiles help identify typical and extreme conditions (e.g., high
irradiance days in Q3), supporting robust normalization methods that mitigate outlier
effects.

Minimum and Maximum
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The minimum (min) and maximum (max) values are the smallest and largest obser-
vations in a dataset, respectively. For irradiance data, they indicate the range of solar
exposure, highlighting potential outliers (e.g., cloudy vs. sunny days). These values are
essential for normalization techniques like min-max, which scale data based on this range.

Standard Normalization

Standard normalization (z-score normalization) transforms features to have a mean of
0 and a standard deviation of 1, which is useful for clustering methods sensitive to scale.
For a feature matrix F ∈ RN×d (e.g., N days, d features like temperature and irradiance),
the normalized matrix F′ is:

F′ = (F− µ)⊙ diag(σ−1),

where µ is the mean vector:

µ =
1

N

N∑
i=1

Fi,

σ is the standard deviation vector:

σ =

√√√√ 1

N

N∑
i=1

(Fi − µ)2,

and ⊙ denotes element-wise multiplication.
Benefits: It ensures features are comparable, improves distance-based clustering (e.g.,

k-means), and reduces outlier impact.
Limitations: Assumes a normal distribution, which may not hold for irradiance data,

and remains sensitive to extreme values.

Min-Max Normalization

Min-max normalization scales features to a fixed range, typically [0, 1], preserving their
original distribution. The normalized matrix F′ is:

F′ = (F−min(F))⊙ diag((max(F)−min(F))−1),
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where min(F) and max(F) are the minimum and maximum vectors across features.
Benefits: It ensures uniform scaling, is ideal for algorithms like neural networks, and

retains weather data distributions (e.g., irradiance peaks).
Limitations: Highly sensitive to outliers (e.g., an unusually cloudy day), which can

skew the range, and it discards the original scale, potentially affecting interpretability in
PV analysis.

Robust Normalization

Robust normalization uses the median and IQR to mitigate outlier effects, suitable for
skewed PV weather data. The normalized matrix F′ is:

F′ = (F− median(F))⊙ diag(IQR(F)−1),

where median(F) is the median vector, and IQR(F) = Q3(F)−Q1(F).
Benefits: It is less affected by outliers (e.g., extreme temperature spikes), preserves

central tendencies, and handles skewed distributions.
Limitations: It does not scale to a specific range, which some algorithms require, and

is computationally heavier due to quartile calculations.

Maximum Absolute Normalization

Maximum absolute normalization scales features to [−1, 1] by dividing by the maximum
absolute value:

F′ = F⊙ diag(max(|F|))−1,

where max(|F|) = maxi |Fi|.
Benefits: Preserves data signs (e.g., negative temperature anomalies), scales symmet-

rically, and is less outlier-sensitive than min-max.
Limitations: Less effective than robust normalization for extreme outliers and unsuit-

able for algorithms requiring non-negative inputs.

Quantile Transformer Normalization
Quantile transformer normalization maps features to a uniform distribution, reducing skew-
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ness in weather data. The normalized matrix F′ is:

F′
i = Qunif (QF (Fi)) ,

where QF (x) = P (Fi ⩽ x) is the empirical CDF, and Qunif(p) = p for p ∈ [0, 1].
Benefits: It mitigates outliers and skewness (e.g., in irradiance distributions), improves

distance-based clustering, and supports non-linear transformations.
Limitations: Computationally intensive for large datasets and may alter feature rela-

tionships, affecting PV pattern analysis.
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