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1 Introduction

During the DMCCG conference held at the Institut Henri Poincaré (IHP)
in July 2001, we discussed with Alberto del Lungo some problems about
polyominoes. One of his concerns was the design of a fast algorithm for
computing the number of polyominoes that tile the plane by translations.
What he really had in mind was probably their enumeration according to
some convenient parameter. The algorithmic approach, by providing com-
putational evidence, is a convenient way to get some insight about the al-
gebricity or rationality of certain classes of polyominoes. Let us recall some
achievements along these lines.

Tilings, regular or not, have puzzled lots of people from ancient times up
to now; and even now, despite of the efforts of many mathematicians these
objects remain mysterious. Indeed these objects reveal an incredible amount
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of simple to state problems that translate into very complex combinatorial
ones [4, 9, 1], like for example the squaring of a square [10]. Golomb [11] in
his book presents many aspects of polyominoes and in particular he searches
how to tile a finite figure of the plane by polyominoes. The enumeration of
general polyominoes is a difficult problem and there is no closed formula
to count them. However, recent work, conducted mainly by the Bordeaux
school and its satellites, allowed to enumerate some very restrictive classes
like the directed, parallelogram, convex ones according to various parameters
such as the half-perimeter, area, height, width, and some other refinements
[4, 8, 15, 14]. More precisely closed formula are known for parallelogram
polyominoes [8], for symmetry classes of parallelogram polyominoes [15],
polyominoes with notion of convexity [3, 5] and symmetry classes of convex
polyominoes in the square lattice [14].

Nevertheless, from the algorithmic point of view Nivat and Beauquier
found a characterization of polyominoes that tile the plane by translations
[2]. We use this characterization to build our algorithm for deciding if a
given polyomino tiles the plane by translation. The methods of this article
use techniques from algorithmic, discrete geometry and combinatorics on
words.

2 Definitions and notation

A polyomino is a simply connected union of unit squares, that is a union of
unit squares without holes. Let P be a polyomino. A tiling by translations
of P is a partition of the whole plane by translated images of P. A polyomino
that tiles the plane by translation is called a tile.

Let Σ = {a, b, ā, b̄} be a four letter alphabet. A reduced word on Σ is
a word on the free group over Σ where all cancellations are done (namely
each occurrence of aā, āa, bb̄ and b̄b is replaced by ǫ the empty word). Let
b(P ) be the boundary word of P that is the reduced word in the free group
on {a, b} where a represents a right step, b an up step, ā a left step and b̄ a
down step that codes the boundary of the polyomino P in the following way.
Starting from an origin on the boundary of P, the boundary word b(P ) is
the concatenation of labels of boundary unit segments read in trigonometric
order. The starting point is not meaningful. Thus the boundary word b(P )
is a cyclic word.

We define the u operator on Σ+ by
(i)(α) = α if α ∈ Σ = {a, b, ā, b̄};
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(ii)(u.v) = (v).(u);

(iii)a = a and b = b.

The following characterization of tiling polyominoes is due to Beauquier
and Nivat [2]:

Theorem 1 (Beauquier, Nivat) A polyomino P tiles the plane by trans-
lations if and only if the boundary word b(P ) is equal up to a cyclic permu-
tation of the symbols to X ·Y ·Z ·X ·Y ·Z where one of the variables in the
factorization may be empty.

If the boundary word is equal to X ·Y ·Z ·X ·Y ·Z (resp. X ·Y ·X ·Y )
such a polyomino is called pseudo-hexagon (resp. pseudo-square).

For example, the polyomino on the left in Figure 1 is a pseudo-hexagon
and the boundary word is equal to X ·Y ·Z ·X · Y ·Z = a · ab · āb · ā · b̄ā · b̄a
(where X = a, Y = ab, Z = āb).

In fact, A polyomino P may have many factorizations of its contour
word. For example, in Figure 1 the boundary word of the right polyomino
has the factorizations b̄a · aba · b · āb · āb̄ā · b̄ and b̄a · a · bab · āb · ā · b̄āb̄.

A regular tiling is a tiling by translations of a polyomino P such that each
tile in the tiling has the same surrounding by translated copies of the tile P

according to a given factorization of its contour word (such tilings are also
called in the literature lattice tilings); see Figure 2 for two regular tilings
from the two factorizations of the contour word mentioned above. Each
factorization leads to a regular tiling of the plane by translations as follows.
If P is a pseudo-hexagon, the factorization b(P ) = X ·Y ·Z ·X ·Y ·Z defines
6 sides of the tile where the sides in correspondence are identified by the
pairings X,X, Y, Y , Z,Z. The translations corresponding to these pairings
allow then to tile the whole plane in a regular way. In the case of pseudo
squares the construction with 4 sides is similar. Observe that two distinct
factorizations of the boundary word of P give two distinct regular tilings of
the plane.

3 Algorithm

Let n = |b(P )| be the length of the boundary word of P. In the following
algorithm the indices of the boundary word b(P ) (or b for simplicity from
here on when there are indices) are taken modulo n. For example, the letter
b[−1] is of course the letter b[n − 1].
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Figure 1: Polyominoes and factorizations.

Figure 2: two regular tilings.

PS=0; PH=0;
// Step 1: Searching correspondence between b[0] and b[i]
for i = 1 to n − 1

if b[0] = b[i] then
// Step 2: Propagation
// Searching the largest b[x1..y1] = b[x2..y2]
// b[x1..y1] containing 0 and b[x2..y2] containing i

x1 = 0; y1 = 1;x2 = i; y2 = i + 1;
while (b[x1 − 1] = b[y2]) {x1 = x1 − 1, y2 = y2 + 1}
while (b[y1] = b[x2 − 1]) {y1 = y1 + 1, x2 = x2 − 1}
// end of Step 2
U = b[y1 + 1..x2 − 1]; V = b[y2 + 1..x1 − 1];
if |U | = |V | then

if U = V then PS=PS+1 // Step 3: Pseudo-square
PH=PH+ KMP(U, V V ) // Step 4: Pseudo-hexagon

end if
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end if
end for

The end of this section explains the algorithm step by step.

Instance: the boundary word b[0..n − 1] of length n of a polyomino P .

Answer: the number of factorizations in pseudo-squares and in pseudo-
hexagons tiling the plane by translation.

Step 1

For each position i from 1 to n−1, we try to match with the complementary
letter of value b[0].

Step 2

We make a propagation (scanning back and forth the boundary words) in
order to have two sides of maximal length in correspondence. In other words,
for each position of value b[0], by propagation we find two complementary
words X and X on the boundary word starting from X = b[0] and X = b[0]
and extending the pair of complementary words (X,X) in order to find the
longest X. Then by this method we find a factorization of b(P ) by X ·U ·X ·V.

Step 3

We now check that the remaining sides U and V have same length. And we
answer that the polyomino is a pseudo-square if U = V that is if we have
found a factorization on X · Y · X · Y with Y = U.

Step 4

We check if the polyomino is a pseudo-hexagon by searching four more sides
in two-by-two correspondence, that is the factorizations U = Y · Z and
V = Y · Z. We use the following property: if such factorization exists, it is
provided by an occurrence of the word U = Z ·Y in V V = Y ·Z ·Y ·Z. This
part can be done for instance by the KMP algorithm of Knuth, Morris and
Pratt [13] or by the algorithm of Boyer-Moore [6].
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Answer

The variable PS (resp. PH) gives the number of factorizations of b(P ) (the
boundary word of P ) by pseudo-squares (resp. pseudo-hexagons). If PS=0
and PH=0 then P does not tile the plane by translation.

3.1 Proof of the algorithm

By Step 2 of the algorithm, we have the following property. For each position
of b[0], by propagation we find two complementary words X and X on the
boundary word starting from X = b[0] and b[i] = X = b[0] and extending
the pair of complementary words (X,X) in order to find the longest X. Then
by this method we find a factorization of b(P ) by X · U · X · V.

By this method, for each couple (b[0],b[i] = b[0]) the algorithm finds
by propagation a unique couple (X,X) with X of maximal length. Step 3
and Step 4 find a factorization if it exists.

Thus given a boundary word of a polyomino P there are 3 cases to
consider, either there is factorization A) by pseudo-hexagon or B) a factor-
ization by pseudo-square or C) no factorization. And for each case we have
to prove that the algorithm finds it.

• P is a pseudo-hexagon

In this case the boundary word can be factorized up to a cyclic per-
mutation of letters on X ·Y ·Z ·X ·Y ·Z and we may assume without
loss of generality that X contains the letter b[0] (otherwise we make
a cyclic permutation of letters). As the algorithm propagates to the
left and to the right for each position of b[0], let be ℓ the ℓth ele-
ment of X corresponding to b[0]. Xℓ = b[0], so Xn−ℓ+1 = b[0] where
|X| = |X| = n. The Step 2 of the algorithm finds at most a couple of
complementary words X ′ and X ′ containing respectively the words X

and X .

a) If X ′ = X then with the help of the KMP-algorithm Step 4 produces
the good factorization X · Y · Z · X · Y · Z.

b) When |X ′| > |X| there is a difficulty and we proceed by contradic-
tion. Assuming that the algorithm finds such pair of complementary
words (X ′,X ′) then X ′ = LXR and Y ′ does exist such that the factor-
ization of P is equal to X ·Y ·Z ·X ·Y ·Z = X ·RY ′·Z ′ R·X ·L Y ′·Z ′L. By
this equality we have Y = RY ′, Z = Z ′ R. Thus Y = Y ′·R, Z = R·Z ′.
If we use this information in the factorization X · Y · Z · X · Y · Z we
obtain X · Y · Z · X · Y ′ R · R Z ′. We find a contradiction because all
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the letters of R · R cancel two by two (R · R = rp · · · r2r1r1r2 · · · rp =
rp · · · r2r2 · · · rp = · · · = ǫ). This means in particular that the bound-
ary word of P is not a reduced word and by construction the boundary
word of P is a reduced word.

• P is a pseudo-square

Here the boundary word can be factorized up to a cyclic permutation
of letters on X ·Y ·X ·Y and we assume also that X contains the letter
b[0]. As in the previous case, the algorithm finds at most a couple of
complementary words X ′ and X ′ containing respectively the words X

and X.

a) If X ′ = X then by Step 3 it finds the good factorization in X·Y ·X·Y .

b) When X ′ 6= X then there is another difficulty. We proceed by
contradiction. Assume that the algorithm finds X ′ = LXR and then
it exists Y ′ such that X ·Y ·X ·Y = X ·RY ′R·X ·L Y ′L. By this equality
we have Y = RY ′R. Thus Y = RY ′ R. If we use this information in
the factorization X · Y · X · Y we obtain X · RY ′R · X · RY ′ R. If we
replace R by r1r2 · · · rp where ri’s are letters then

X · Y · X · Y = Xr1r2 · · · rpY
′rp · · · r2r1 · X · r1r2 · · · rpY ′ rp · · · r2r1.

There are many factorizations in pseudo-square and we will work on
the following one Xr1·Y

′′·r1 Xr1·Y ′′·r1 where Y ′′ = r2 · · · rpY
′rp · · · r2,

Y ′′ = r2 · · · rpY ′ rp · · · r2 in order to show that the contour word is not
one of a polyomino.

We have Xr1Y
′′r1 Xr1Y ′′ r1 and we will now show by an argument

of discrete geometry that this is not a boundary word of a simply
connected union of unit squares (i.e. of a polyomino). In this decom-
position r1 is just a letter then for the reasoning we will take r1 = a

(the reasoning is the same with r1 = b, ā, b̄). We use tools from dis-
crete geometry introduced by Daurat and Nivat [7]. Since a polyomino
is a simply connected union of squares (the boundary word delimits
squares inside the polyomino P (noted I-squares) and squares outside
the polyomino P (noted O-squares)). A corner on the boundary of P

is called salient if it is surrounded by one I-square and three O-squares.
A corner on the boundary of P is called reentrant if it is surrounded
by three I-squares and 1 O-square. Daurat and Nivat proved in [7]
that for any polyomino P the number S(P ) of its salient points and
the number R(P ) of its reentrant points satisfy S(P ) = R(P ) + 4 see
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Figure 3. For example, if P is a pseudo-square with boundary word
XY X Y the number of salient points associated with X is equal to
the number of reentrant points associated with X (by this reason-
ing S(X) = R(X), S(Y ) = R(Y ), R(X) = S(X) and R(Y ) = S(Y ).
Thus by Daurat-Nivat theorem, it follows that the four points where
X, X̄, Y, Ȳ connect are salient.

S
R R

S

S

S

S

S

Figure 3: Salient and reentrant points.

In our case we have the factorization in XaY ′′a XaY ′′ a and on the
plane we have to place 4 segments associated with a, ā, a, ā according
to the factorization. In fact each segment determines two points on
the boundary. We find the same relation as in the previous example:
S(X) = R(X), S(Y ) = R(Y ), R(X) = S(X) and R(Y ) = S(Y ) and
we just have to consider the 8 remaining points. The factorization
is XaY ′′a XaY ′′ a with X = x1 · · · xm and Y ′′ = y1 · · · yn. Then we
have to compute the difference between S(xma) + S(ay1) + S(yna) +
S(a xm)+S(x1a))+S(ayn)+S(y1 a)+S(ax1) and R(xma)+R(ay1)+
R(yna) + R(a xm) + R(x1a)) + R(ayn) + R(y1 a) + R(ax1). But if the
point associated with two letters uv is salient (resp. reentrant) then by
construction the point associated with v u is reentrant (resp. salient).
If S(uv) = 1 then R(v u) = 1. By this property S(xma) + S(ay1) +
S(yna)+ S(a xm)+ S(x1a)) + S(ayn) + S(y1 a) + S(ax1) = R(xma) +
R(ay1) + R(yna) + R(a xm) + R(x1a)) + R(ayn) + R(y1 a) + R(ax1).
And globally for the polyomino P associated with the boundary word
XaY ′′a XaY ′′ a we have S(P ) = R(P ). This is in contradiction with
the result on salient and reentrant points. Thus P is not simply con-
nected and cannot be a polyomino.

• P does not tile the plane

In this case by the characterization of Beauquier and Nivat there is
no factorization on X · Y · X · Y nor X · Y · Z · X · Y · Z. Then the
algorithm fails in Step 3 and 4 to find a characterization and answer
that P does not tile the plane by translation.
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3.2 Complexity of the algorithm

Let n be the length of the boundary word associated with P.

In the first step, the algorithm tries to find all the positions of value b[0]
in the boundary word with complexity O(n).

In Step 2, the propagation give complexity O(n). Thus the total com-
plexity for steps 1 and 2 is O(n × n).

In Step 3, we try to find a factorization by checking if U = V and the
complexity of this verification is O(n). Remark also that step 3 makes just
the continuation of step 2 and thus the complexities are added. Thus the
total complexity for steps 1, 2 and 3 remains O(n × (n + n)).

In Step 4, we try to find a factorization by using the KMP algorithm
and according to the complexity of KMP algorithm this step is on O(m+k)
where m is the length of V V and k the length of U . Remark that step
4 just make the continuation of step 2 and step 3 and then we add the
complexity of both parts. Thus the computation of the total complexity of
the algorithm gives an algorithm on O(n × (n + n + (n + n))) = O(n2).

4 Enumeration of polyominoes by computer

We can use our algorithm to compute the number of polyominoes with
only pseudo-square factorizations (only PS), with only pseudo-hexagon fac-
torizations (only PH) and with both factorizations in pseudo-square and
pseudo-hexagon. The last column is the number of polyominoes of length
n that tile the plane by translations. In fact, factorizations exist only for
even-length perimeter and of course there is no factorization for odd-length
perimeter. In literature, authors use the half-perimeter in order to enumer-
ate the polyominoes that is the length of the boundary word divided by 2.
The enumeration of polyominoes in this table is just the sequence A002931
of the On-line Encyclopedia of integer sequences by Sloane.

We present the result for half-perimeters being between 2 and 18.
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Half-perimeter polyominoes only PS only PH both tiles

2 1 1 0 0 1

3 2 0 0 2 2

4 7 0 4 3 7

5 28 0 20 8 28

6 124 1 82 17 100

7 588 8 298 46 352

8 2938 40 1007 103 1150

9 15268 170 3326 220 3716

10 81826 523 10394 513 11430

11 449572 1624 31918 1126 34668

12 2521270 4729 95767 2529 103025

13 14385376 13448 282816 5688 301952

14 83290424 37180 824720 12989 874889

15 488384528 102074 2383628 29630 2515332

16 2895432660 276668 6828850 68569 7174087

17 17332874364 745724 19452798 159064 20357586

18 104653427012 1999420 55084940 371115 57455475

In the spirit of the works of Leroux, Rassart and Robitaille [15, 14],
we will complete this study by investigating symmetry classes of pseudo-
hexagons and pseudo-squares. These results help to understand better the
combinatorics of the polyominoes that tile the plane by translations and
may be useful for deriving a closed formula or a recurrence relation for the
number of pseudo-squares or pseudo-hexagons or regular tilings. In this
direction Alberto del Lungo and co-authors obtained by using the so-called
ECO method the enumeration of parallelogram polyominoes (polyominoes
with two non-crossing paths from an origin to an end with only right and
up steps) and convex polyominoes [1, 8]. The counting of pseudo-square
and pseudo-hexagon parallelogram polyominoes begs therefore for a closed
formula and Alberto asked us this question in July 2001, but still now we
don’t have the method to enumerate such classes of polyominoes.
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1996.

[5] S. J. Chang and K. Y. Lin, Rigorous results for the number of convex
polygons on the square and honeycomb lattices, J. Phys. A: Math. Gen.,
21 (1988), 2635–2642.

[6] T.H. Cormen, C.E. Leiserson and R.L. Rivest, Introduction to algo-
rithms, Chapter 34, pp 853–885, MIT Press, 1990.

[7] A. Daurat and M. Nivat, Salient and Reentrant Points of Discrete Sets,
in Proc. of the nineth International Workshop on Combinatorial Im-
age Analysis (IWCIA 2003), volume 12 of Electronic Notes in Discrete
Mathematics. Elsevier, 2003.

[8] A. Del Lungo, E. Duchi, A. Frosini and S. Rinaldi, Enumeration of con-
vex polyominoes using the ECO method, in Discrete Models for Complex
Systems, DMCS’03 , Michel Morvan an Éric Rémila (eds.), Discrete
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