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1 Introduction

The goal of this article is to present a method to construct various classes of
convex polyominoes using DNA Wang tiles. The construction is based on some
results of [4], where the authors present a coding of convex polyominoes in
terms of two dimensional languages, by means of tiling systems [12]. Adopting
the same formalism we used in [4], and applying an algorithm by L. De Prophetis
and S. Varricchio [11], we are able to transform the tiles of the tiling systems
for convex polyominoes to labelled Wang tiles. The last step of the construction
is based on a conversion from labelled Wang tiles into DNA Wang tiles [1],
which gives an effective way to construct nano structures with convex polyomino
shapes.

The possibility of constructing polyominoes by means of DNA Wang tiles seems
interesting since polyominoes are simple and important discrete structures that
appear in several problems related to theoretical computer science and discrete
mathematics. In the half century, since Solomon Golomb used the term in
his seminal article [13], the study of polyominoes has proved a fertile topic
of research. By this period in the mid-1950s, it was clearly a timely notion
in discrete models, as the increasingly influential work of Neville Temperley,
on problems drawn from statistical mechanics and molecular dynamics [16],
and of John Hammersely, dealing with percolation [14], bear witness. More
recent years have seen the treatment of numerous related problems, such as the
problem of covering a polyomino by rectangles [5] or problems of tiling regions
by polyominoes [2, 6].

In our work we describe a general method for constructing various shapes of
convex polyominoes using DNA Wang tiles. In particular, we can restrict our-
selves to some special classes of polyominoes, by imposing some directedness
constraints, and then build, for instance, directed-convex polyominoes or par-
allelogram polyominoes. Thus we are able to send a planar signal in a certain
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direction.
Using this approach polyominoes, can be viewed as a brick for investigating
different machines that send a planar signal and compute on the plane using
self assembling of DNA oligo-nuceotides. This domain of DNA computing is very
active and the transfer of concepts from theoretical computer science to nano
structure is a challenge in order to construct biomolecular machines [9, 17].
These works have shown how information and algorithms can be encoded in
biochemical systems, while, as E. Winfree points out some efficiency problems
deserve interest:

“Recent theoretical work by Adleman, Goel, Reif, and others, has focused on two
issues of efficiency: what kinds of shapes and patterns can be assembled using a
small number of tiles, and/or how quickly they can be assembled?”

The structure of the article is the following. First, we recall the basic definitions
and notations of two-dimensional languages and tiling systems. In Section 3,
we recall some basic definitions on polyominoes, in particular the definitions
of convex, directed-convex, and parallelogram polyominoes. In Section 4, we
describe the algorithm to transform tiles of a tiling system into labelled Wang
tiles. In Section 5, we show explicitly the set of labelled Wang tiles that allows
us to construct convex polyominoes. In Section 6 we give an example of a
parallelogram polyomino built on labelled Wang tiles. The last section concerns
the transformation of labelled Wang tiles into DNA Wang tiles. Moreover, we
show that it is possible to control the size of the polyominoes to be constructed,
by means of a DNA strand.

2 Local languages and tiling systems

In this section we briefly recall the definitions of local picture language and tiling
system, and the main properties which will be useful to comprehend the rest of
the paper. For more details on two-dimensional languages we refer to [12].

Given a finite alphabet Σ, we define picture of size (m, n) over Σ, a two dimen-
sional rectangular array of elements of Σ having m rows and n columns.
Following the notation introduced in [12], we surround a (m, n) picture p with
a special symbol, indicated by #, not contained in Σ, so that we obtain a
new picture p̂ of size (m + 2, n + 2) (see Fig. 1). This boundary symbol results
extremely useful in the general framework of two-dimensional languages, when
scanning strategies for pictures are requested, while in our contest it will be
used to guarantee the rectangular shape of each picture.
We denote by B2,2(p) the set of all blocks (or sub-pictures) of p of size (2, 2).
Each element of B2,2(p) is called a tile.

Definition 1 Let Σ be a finite alphabet and Σ∗∗ the set of all possible pictures
over Σ. A two dimensional language L ⊆ Σ∗∗ is local if there exists a finite set
θ of tiles over the alphabet Σ ∪ {#} such that L = {p ∈ Σ∗∗ : B2,2(p̂) ⊆ θ}.
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Figure 1: A picture p in the alphabet Σ = {1, 2, 3, 4}, and the picture p̂ obtained
by surrounding p with the symbol #.

The set θ is usually called a representation by tiles for the local language L, and
we write L = L(θ).

Example 1 The language of the pictures over Σ = {0, 1} of square shape with
the symbol 0 in one diagonal and the symbol 1 in all the other positions is a
local language (see Fig. 2). The representation by tiles is given by:
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We assume that the empty picture belongs to L(θ) if and only if θ contains the

tile
# #
# #

.

Definition 2 A tiling system (TS) is a 4-uple T = (Σ, Γ, θ, π), where Σ and Γ
are two finite alphabets, θ is a finite set of tiles over the alphabet Γ∪ {#}, and
π : Γ → Σ is a projection.

We say that a tiling system T defines the language L = π(L(θ)), where L(θ) is
a local language over Γ and we write by convention L = L(T ). Moreover, we
say that L ⊆ Σ∗∗ is recognizable by tiling systems (or tiling recognizable) if there
exists a tiling system T = (Σ, Γ, θ, π), such that L = L(T ).
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Figure 2: A picture in L (θD0), (a), and the corresponding picture in L(T ), (b).

Example 2 Consider the local language in Example 1. Let π : Γ → {a} be
the projection that maps each element of Γ in a. Let Σ = {a}, then the tiling
system T = (Σ, Γ, θD0, p) recognizes the language L(T ) of the pictures over Γ
having the form of a square (see Fig. 2). Notice that such a language is not
local, whereas it is tiling recognizable.

3 Basics on polyominoes

In the plane Z×Z a cell is a unit square, and a polyomino is a finite connected
union of cells having no cut point. Polyominoes are defined up to translations.
A column (row) of a polyomino is the intersection between the polyomino and
an infinite strip of cells whose centers lie on a vertical (horizontal) line.

(a) (b) (c)

Figure 3: (a) a column-convex polyomino; (b) a convex polyomino; (c) a directed
(not convex) polyomino.

A polyomino is convex if it is both column and row convex (Fig. 6 (b)). A
polyomino P is said to be directed when every cell of P can be reached from
a distinguished cell (usually the leftmost at the lowest ordinate), by a path
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(b) (c) (d)(a)

Figure 4: (a) a Ferrers diagram; (b) a parallelogram polyomino; (c) a stack
polyomino; (d) a directed-convex polyomino.

which is contained in P and only uses north and east unit steps (Fig. 6 (c)).
Figure 4 (d) depicts a polyomino that is both directed and convex. Moreover
we can define three types of directed and convex polyominoes, i.e. the Ferrers
diagrams (Fig. 4 (a)), the parallelogram polyominoes (Fig. 4 (b)), and the stack
polyominoes (Fig. 4 (c)). As Figure 4 shows, each of these three subsets can be
characterized, in the set of convex polyominoes, by the fact that two or three
vertices of the minimal bounding rectangle of the polyomino must also belong
to the polyomino itself.

A generic polyomino P can be can be encoded as a two-dimensional word on
the alphabet {0, 1} obtained by using a 1 (resp. a 0) to represent the cells of
the minimal bounding rectangle belonging to P (resp. not belonging to P ). If
the language of these two-dimensional words is tiling recognizable, then we say
that the class of polyominoes under consideration is tiling recognizable.
In [4], we proved that Ferrers diagrams, convex, directed-convex, stack, and
parallelogram polyominoes are tiling recognizable classes. The main idea on
which relies our construction is to control the convexity of the four disjoint sides
A, B, C and D (possibly empty) which form the exterior of a convex polyomino.
To each convex polyomino we associate a picture obtained by representing with
a 1 every cell belonging to the polyomino, and with the symbol a (resp. b, c, d)
every cell in A (resp. B, C, D), as depicted in Fig. 5 (b). We can prove that the
language of these pictures is local, hence we can map easily it into the language
representing convex polyominoes.

4 Algorithm to transform Tiling Systems into

labelled Wang Tiles

In this section we recall some results that link Wang tiles and tiling systems.
First of all we recall that a Wang Tile is a square in which each edge is assigned
a color (or symbol) and a labelled Wang tile is a Wang tile in which the interior
is assigned a symbol.
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Figure 5: (a) a convex polyomino P individuates four disjoint sides; (b) the
representation of P as a word on the alphabet {a, b, c, d, 1}.

We represent a labelled Wang tile by:
α

β x γ

δ

where α, β, γ, δ are symbols rep-

resenting colors for the edges, and x is the symbol for the label.
Given a set of Wang tiles, a valid tiling requires all shared edges between tiles to have
matching colors. Wang tiles were introduced in [18, 19] and later studied in [7] in
relation to problems concerning the tiling of the infinite Euclidean plane. Labelled
Wang tiles were used in [11] in matter of recognizability of picture languages. More
recently Wang tiles are used for image generation (see [8]) and DNA computing (see
[17]).
For the result of this section we refer to the paper [11], which describes the bijective
correspondence between tiling systems and labelled Wang tiles. Substantially we will
apply the same algorithm, changing just a little the notation.
Let T = 〈Σ, Γ, Θ, π〉 be a tiling system, we consider over the set of tiles Θ, five subsets
of tiles: ΘN the tiles of the northern border, ΘE the tiles of the eastern border, ΘS

the tiles of the southern border, ΘW the tiles of the western border, ΘC the corner
tiles and ΘI the set of the remaining tiles (the tiles of the interior).

Before giving the algorithm we need to observe the following facts:

1. If we start from a picture of a tiling system, and we want to represent it using
labelled Wand tiles, obviously the dimensions of the picture (i.e. the number of
its columns and rows) must be the same in both the representations. While this
can be a trivial observation, it will be useful in the following.

2. We must take care of the projection π. This projection maps the alphabet Σ
(i.e. the alphabet of L(Θ)) in Γ (i.e. the alphabet of L(T )) in such a way that a
word p ∈ L(Θ) is mapped into p′ ∈ L(T ); more precisely the symbol in position
(i, j) in p′ is the image by π of the symbol in the position (i, j) in p. Thus we
insert a label in the labelled Wang tile, at position (i, j), which is the image
through π of the symbol in the position (i, j) in p (that is the symbol at position
(i, j) in p′).

Algorithm to transform tiling Systems into labelled Wang tiles.
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The algorithm performs in the following three steps.

• First we consider ΘN . Its tiles are of the kind
# #

a b
; for each of them

we construct the labelled Wang tile

BN

#

a
π(b) #

b

ab

, where with BN

we mean that we are placed on the northern border, with #

a
we mean

one symbol, and the same holds for #

b
and for ab. Though this notation

may be confusing, we use the two symbols (which let us individuate the
side of the tile we are considering) to mean one.

• Concerning the set of tiles ΘW , it contains tiles of the kind
# a

# b
, we

replace them with the labelled Wang tile

#a

BW

π(b) a
b

#b

, where the

notation is the same as above.

• For the west-north corner tile
# #

# a
∈ ΘI we have the labelled Wang

tile

BN

BW

π(a) #

a

#a

.

We note that the label of the labelled Wang tiles is given by the projection of the
symbol which is placed on the rightmost position of the label of the south edge, and
on the lowest position of the label of the east edge of the labelled Wang tile.
For what we say in the previous observations we can not repeat the easy mechanism
that we used to translate ΘN , ΘW , ΘI also to translate the remaining subsets of tiles.
In fact, following this procedure, we would construct a picture with one row and one
column more than the corresponding two-dimensional picture of the tiling system. To
get rid of this problem we use a trick to contract the two rows more at south into a
unique row and the two columns more at east into one column.

• For the subset ΘS we translate a pair of tiles of the tiling system in one la-

belled Wang tile. More precisely, for each tile of ΘS we translate the pair

„

a b

# #
,

c d

a b

«

with the labelled Wang tile

cd

c
a
#

π(b)
d
b
#

BS

.

We observe that the first component of the pair is a tile of ΘS , and the
second one a tile that matches with the row on its north. This allows us
to contract the two southern rows.

• For the tiles of the eastern border we repeat an analogous of the previous
reasoning in order to contract the two eastern columns: the generic pair

of tiles

„

a #

b #
,

c a

d b

«

is translated with the labelled Wang tile
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ca#

c
d

π(b) BE

db#

.

• Concerning the N-E corner tile, the pair

„

# #

a #
,

# #

b a

«

is

translated into the labelled Wang tile

BN

#

b
π(a) BE

ba#

.

• For the S-W corner tile, the pair

„

# a

# #
,

# b

# a

«

is translated

into the labelled Wang tile

#b

BW π(a)
b
a
#

BS

.

• For the E-S corner tile, the tiles
a #

# #
,

c b

d a
,

d a

# #
,

b #

a #

are translated into the labelled Wang tile

cb#

c
d
#

π(b) BE

BS

.

• The set ΘI contains tiles of the kind
a b

c d
, that we translate with the

labelled Wang tile

ab

a
c

π(d) b
d

cd

.

Performing the translation we have obtained all the labelled Wang tiles necessary to
represent the local language L(Θ) recognized by the tiling system T . Finally, we must
take care of the projection π. We recall that π maps the alphabet Σ, that is the
alphabet of L(Θ) and of the label of the labelled Wang tiles, in Γ. Then we must
replace the labels of the labelled Wang tiles with the respective images through π, and
we have completed the translation.

The reader can find the proof of the correctedness and validity of the algorithm in
[11]. In the next section we present a slight improvement to the previously defined
procedure, by adding a class Wλ, in order to control the transformation of particular
objects, the empty polyomino and of polyominoes of sizes 1× n and m× 1 in labelled
Wang tiles.

5 Convex polyominoes constructed on labelled

Wang tiles

In the paper [4] it was proved that many classes of convex polyominoes can be encoded
as words of tiling recognizable two-dimensional languages. In particular it was showed
the coding for the class of convex polyominoes. We refer to [3, 4] for formal definition

8



of the tiling system Tc = 〈Σc, {0, 1}, Θc, π〉 which recognizes the two dimensional
language Lc of the convex polyominoes. We recall that Σc = {a, b, c, d} and the
projection π for this language is π(a) = π(b) = π(c) = π(d) = 0, π(1) = 1 (see Fig. 5).

We are now able to encode Tc using the algorithm presented in the previous section,
and then give the set of labelled Wang tiles that represents the language Lc.
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.

To summarize, convex polyominoes are generated on the plane using the set of
labelled Wang tiles WConv = Wλ ∪ WR ∪ WA ∪ WB ∪ WC ∪ WD where:

i. Wλ generates rectangles of dimensions 0, 1 × n and m × 1;

ii. WR generates the other rectangles;

iii. WA controls the upper right side of the exterior of the polyomino (side A

in the picture Fig. 5), WB the upper left side, WC the lower right side and
WD the lower left side.

6 Construction of a Parallelogram polyomino us-

ing labelled Wang tiles

An interesting refinement of the algorithm we have proposed is the encoding of
parallelogram polyominoes using labelled Wang tiles. The utility of such encod-
ing is for instance to simulate a planar signal. In particular, such constructions
appear in the theory of cellular automata (see [15]) and also for the construc-
tion of planar signal machines in order to investigate planar computation using
geometry (see [10]). The goal is to send many planar signals and to synchronize
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the signals in order to make one or many actions. The best known example in
discrete mathematics is of course the ”firing squad synchronization problem”
and the discrete and continuous variations of this problem ([10, 15]).

We recall that the class of parallelogram polyominoes can be defined using the
notions of convexity and and of directed polyomino. In fact, parallelogram
polyominoes can be characterized –within the class of convex polyominoes–
by the property that two vertices (precisely the south-west and the north-east
vertices) of the minimal bounding rectangle of the polyomino must also belong
to the polyomino itself (see Fig.4 (b)).
As for the class of convex polyominoes, it is possible to encode the class of the
parallelogram polyominoes by means of a two-dimensional languages [4].
So, let us indicate with LP the recognizable two-dimensional language that
represents parallelogram polyominoes. Then –applying again our algorithm–
we can translate LP into a set WP of labelled Wang tiles. More explicitly this
set of Wang tiles is given by WP = Wλ ∪WR ∪WA ∪WC , where Wλ, WR, WA,
and WC have been defined in the previous section.

Just to give an example, we show a parallelogram polyomino, the two-dimensional
word coming from LP , its projection by π (where π(a) = π(c) = 0, π(1) = 1)
and its encoding by means of labelled Wang tiles.

Figure 6: A directed (parallelogram) polyomino

# # # # # #
# a a a 1 #
# a a 1 1 #
# a a 1 c #
# a 1 1 c #
# 1 1 c c #
# # # # # #

−→π

# # # # # #
# 0 0 0 1 #
# 0 0 1 1 #
# 0 0 1 0 #
# 0 1 1 0 #
# 1 1 0 0 #
# # # # # #

Figure 7: The two dimensional word that represents the polyomino in Figure 6
(on the left) and its projection by π (on the right).

Similarly, using labelled Wang tiles, we can construct the following families of
convex polyominoes:

• directed convex polyominoes, using the set WDC = Wλ∪WR∪WA∪WB ∪
WC ;
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Figure 8: The encoding of the polyomino in Figure 6 by means of labelled Wang
tiles.

• Ferrers diagrams, using the set WF = Wλ ∪ WR ∪ WB;

• stack polyominoes the set WS = Wλ ∪ WR ∪ WA ∪ WB .

7 From Labelled Wang tiles to DNA Wang tiles

The construction of Barish, Rothemund and Winfree [1] suggests a method to
transform the set of labelled Wang tiles into the set of DNA Wang tiles. As a
matter of fact, we are able to construct a nano structure carrying a bit (0 or 1)
according to the exterior of the polyomino (labelled by 0) or the interior of the
polyomino (labelled by 1). Following such a construction, we could construct the
set of DNA Wang tiles associated with convex polyominoes, parallelogram poly-
ominoes, directed-convex polyominoes, stack polyominoes or Ferres diagrams.

The next step consists in the real construction of the nano structures in solution.
In particular, it will be interesting to study the shape of convex polyominoes
constructed using DNA tiles, to investigate which shapes are constructed more
frequently, and how these properties may change by varying important factors
such as the temperature or the concentration in solution of different tiles.
We plan to carry on such a line of research in some future works realized in
collaboration with the physicists in Grenoble, with the main purpose to con-
struct polyominoes in nano-structure and to study the typical shapes of DNA
polyominoes.

To end this study, an interesting further problem is to construct a strand in order

13



to control the perimeter of the polyomino generated by DNA Wang tiles. This
seems interesting, since the perimeter is one of the most important parameters
on which polyominoes have been studied in literature.
We observe that, in each step of the construction, the picture is surrounded by
the symbol #. In the last set of tiles, this symbol appears in the Wang tiles
of the border. Nevertheless, we also use the symbols BN , BE , BS and BW for
coding the border when we pass to DNA tiles.
Actually, it is sufficient to use 7 symbols (the 4 symbols BN , BE , BS , BW , plus
3 others) to construct a DNA strand to impose the size of the polyomino. The
goal of this last construction is to force the size of the polyomino. This DNA
strand begins with BS , then in the corner we have BWS , then m times BW , then
BWN , then n times BN , then BNE and at the end BE . This strand imposes
that the constructed polyomino has perimeter equal to 2m + 2n.

BWN BN BN BN BN BNE

BW BE

BW

BW

BW

BW

BWS BS

Figure 9: The strand that controls the perimeter of the convex polyomino.

Of course, such a construction gives only by a theoretical point of view a convex
polyomino with given perimeter, since in reality there can be errors in the self-
assembling. In some possible future work it would be also interesting to study in
solution the average number of errors concerning the perimeter of the polyomino
generated using DNA tiles.
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