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To fulfill the biological activities in living organisms, proteins are endowed with dynamics, robustness 

and adaptability. The three properties co-exist because they allow global changes in structure to arise 

from local perturbations (dynamics). Robustness refers to the ability of the protein to incur such 

changes without suffering loss of function; adaptability is the emergence of a new biological activity. 

Since loss of function may jeopardize the survival of the organism and lead to disease, adaptability may 

occur through the combination of two local perturbations that together rescue the initial function. The 

review highlights the relevancy of computational network analysis to understand how a local change 

produces global changes.   

Introduction 

The folding of a protein (Box 1) and its biological activity depend on the dynamics of the atomic 

interactions between the amino acids of the protein. Every amino acid interacts with every other amino 

acid, through interactions that weaken with distance. To create a simplified picture for tractability, we 

define 'a chemical link' as at least one atom of residue i being closer than 5 Å to an atom of residue j 

(Box 1). Above that distance, there is no “chemical” link. Thus a protein can be represented as a network 

(Box 1) of interacting amino acids. 

Proteins present ample dynamics, well-illustrated by protein allostery where a perturbation at one site 

(binding) affects another (active) site which is distant both in the sequence and in space [1,2]. The 

question is: how do two sites distant within the protein communicate? This issue involves understanding 

how a local perturbation (e.g. amino acid mutation, ligand binding) produces the dynamics that leads to 

global effects, i.e. manifest far beyond the site of the perturbation. The science of networks has 

produced numerous methods to tackle this question because networks mediate communications from 

local to global scale. Some applications of such methods to protein dynamics are briefly described in the 
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first part of the review. Yet, the mechanisms underlying local-to-global changes in proteins still escape 

us and the transfer of “technology” remains a difficult exercise. To motivate it, the second part of the 

review prospectively visits other real networks.  

  

Amino acid networks (Box 1) 

Evidence of local-to-global changes in proteins 

Local perturbations of proteins may produce global changes that result in (i) robustness (maintenance of 

the function), (ii) diseases (harmful loss of the function) or (iii) adaptability (new/combined/recovered 

function) (Fig. 1). The latter often involves a combination of two local perturbations. Protein evolution 

and diseases related to protein changes are examples [3-8].  

p53 is a transcription factor (DNA binding protein) regulating cell death, acting thus as a tumor 

suppressor by preventing cancers. In most tumors robust, lethal or adapted local perturbations are 

found in p53 [9,10]. It is therefore a suitable prototype to consider local-to-global changes in proteins.  

Such changes in p53 have been observed using molecular dynamic (MD) simulations and computational 

network analysis [8]. Robust, lethal and adaptive mutations found in [8] are Y239N, G245S and G245S-

N239Y, respectively. MD simulations performed on the X-ray structures of wild-type and mutant p53 

were analyzed by building networks of amino acids (nodes) linked by Root-Mean-Square Deviation 

(RMSD)-distances across the simulation. Clustering methods were applied to group amino acids 

according to RSMD. Roughly, if all amino acids were moving concomitantly there would be one cluster. 

The number of clusters (NOC) reports the extent of independent amino acid motions: many clusters 

indicate a lack of rigidity and a destabilized protein. The p53 cancerous G245S mutant of p53 has 32 

NOCs, against 21 for the wild-type (WT), consistent with a large global change that agrees with the loss 

of function of the protein. N239Y has 19 NOCs suggesting small global changes compatible with 

maintenance of function. The G245S-N239Y has 15 NOCs, which is less than the WT, indicating global 

changes leading to a more rigid conformation, perhaps countering the G245S changes and rescuing 

protein function. Network clustering is also used for identifying allosteric sites and protein sectors 

evolutionary units of three-dimensional structure [1,2,6,7,11,12].  

Mutations that lead to loss of function and cancer are also found in the tetrameric domain of the p53 

[13,14]. Topological amino acid networks built from the X-ray structures of wild-type and mutants, 

considering amino acid as nodes and distances between the atoms of the amino acids as links, indicated 

that amino-acid contacts (referred to as signatures), changed upon mutation [15-17]. Because the 
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signatures capture contacts beyond chemical ones, these results showed that the local perturbation had 

global effects. Graph signatures are also used to predict enzyme promiscuity [18]. Likewise, we reported 

changes of links and nodes in the entire p53 network upon a single mutation [19]. Here the links in the 

networks are chemical bonds, possibly monitored by different measures (distance, accessible surface 

area, etc.) such that different networks can be constructed from the same X-ray structure [20,21]. Note 

that topological amino acid networks are called several names in the literature: contact 

networks/graphs, protein structure network, residue interaction graphs (RIG) or amino acid networks, 

used here.  

 

What about the mechanism underlying local to global communication in proteins?  

Assuming the changes are discrete atomic interaction modifications rather than an overall reduction of 

the protein dynamics, the next question is how the change on a local site is carried out elsewhere. 

Is it a question of finding a path? Classically in networks, shortest paths are measured (e.g. using Floyd 

Warshall algorithm, Girvan−Newman algorithm) to identify nodes or links which are central to the 

communication in the network (betweenness, closeness, etc.). Such measures are used in protein 

allostery [22-29]. They are relevant only to networks whose communication seeks the shortest available 

routes (e.g. goods/metabolite transports). 

It is also a question of network architecture which designs communication avenues (Fig. 2A). The classic 

‘scale-free’ network provides communication through ‘hubs’, nodes with many links [30,31]. Such 

networks have a power law degree distribution (Box 1), namely few hubs and a majority of nodes with 

few links. By definition, hubs are in contact with many nodes and so every one of them is close to others 

through them (small world effect) (Fig. 2A). Under well-defined conditions on the degree distribution, 

the mean path length (Box 1) and the clustering coefficient, hubs control the communication within the 

network [30]. Since the majority of nodes are poorly connected, perturbation (i.e. the removal of a node 

and its links) usually has little effect on the network; however perturbing hubs is particularly damaging 

(Fig 2A) [31]. This mirrors the behaviour seen in protein mutation: most amino acid mutations are robust 

to loss of function, with the minority being dangerous. Indeed, proteins have been described as small 

worlds [24,32,33]. Nevertheless, this description does not provide a natural platform for understanding 

adaptability through the combination of two perturbations, which requires that both positions 

communicate and that the changes are reversible. In such framework, perturbation over two hubs 
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would be necessary and the damages of one would need to compensate the damages of the other 

instead of cumulating damages.  

Moreover, the two hubs would need to communicate, which raises the issue of correlation of degrees: a 

measure of the global architecture of networks [34] (Fig. 2A). A network is assortative when nodes 

preferentially attach to nodes with similar degree and disassortative when the preference is for nodes of 

different degree [35-37]. Knowing the level of assortativity aids prediction of the number of changes 

between connecting hubs in an amino acid network [38,39]. In model and real networks, nodes that 

regulate the network (driver node) avoid high degree nodes probably to keep the network under control 

[40]. Robustness and adaptability in terms of correlation of degrees is a complex problem beyond the 

scope of the review; see for example [41-43]. 

Let us explore amino acid hubs as communication devices in proteins. First, there are few statistics on 

amino acid networks that report simultaneous measures of degree distributions, mean path length and 

clustering coefficients [33]. Second, amino acid networks have random, exponential or power law 

degree distribution [19,21,33,44]. In other networks, hubs have hundred or more times as many 

connections as non-hubs; in proteins however the difference in connectedness is much smaller. Out of 

twenty-two amino acids only R, W, Y, F and H are frequently observed with a degree above three or 

four, arguing against the existence of hubs in proteins, at least if we define them as nodes with a degree 

exceeding significantly the average degree [19,21]. Thus, there is no log scale differences in the degree 

of amino acids in contrast, for example to a web network, e.g. 300 000 nodes and hubs ranging from 

degree 100 to 1000 [45]. Such ratios are impossible in proteins because the contacts between amino 

acids are based on Euclidian distances, so the surface of contacts grows with   r2 (r is the amino acid 

radius). A degree ratio of 100 would imply an amino acid with a 10 Å radius. Thus amino acid hubs must 

have a degree moderately higher than the average network degree, as reported [19,21,33]. Whether 

moderate degree hubs can control the communication in proteins is still unknown. 

 

What can be learned from other real networks? 

Peer to peer communications [46,47]. 

However, communications mediated by high versus moderate degree hubs have been studied in other 

real networks such as epidemic risk and computer communications (Fig. 2B). Nowadays computer-to-

computer communications are based on peer-to-peer (P2P) or GOSSIP networks  where information 

circulates step by step from one computer to the next (Fig. 2B). P2P networks have nodes of similar 
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degree and hubs of moderate degree. The P2P architecture is robust to node failures (i.e. removal of 

nodes and links) and would be a satisfactory model of amino acid networks, where most nodes/amino 

acids are resistant to mutation. P2P networks are resilient: they use more resources (links) than the 

minimum necessary and organize them to have alternative/back-up paths between nodes to avoid 

failures [48]. In fact, resilience and combinatorial interactions are common mechanisms for robustness 

in biological networks [49-51].  

 

Let us explore P2P communication in amino acid networks. Amino acids communicate via chemical links 

between their atoms, which have by our definition a limited spatial reach. It is therefore reasonable to 

assume that communication beyond that point involves a step by step mechanism. Quite simply, amino 

acid i chemically interacts with amino acids j (distance 1), amino acid j chemically interacts with amino 

acids k, which makes a communication path between i and k at distance 2, and this process can be 

iterated. We have looked at the changes in the atomic interactions of the p53 tumor suppressor upon 

the local perturbations N239Y and N239Y-G245S, respectively. Unweighted and weighted networks are 

built from the X-rays structures (Fig. 2C).  For the former, two amino acids which have at least one pair 

of atoms at a distance below 5 Å are defined to have one link; for the latter, the number of links 

(weighted degree) between two amino acids is equal to the number of pairs of atoms they have which 

are closer than 5 Å. The weighted degree measures how strongly two residues are connected while the 

unweighted degree simply keeps track of the fact that they are connected. The mutation of Asn239 

(residue i) introduces a new link between residues Pro177 (residue k) and Gly245 (residue l) (Fig. 2C). Thus, 

this local perturbation leads to changes at distance 3, far beyond the residue’s chemical reach. It also 

alters the weighted links between Asn239 and His179 (residue j) and between His179 and Pro177. A P2P 

mechanism rationalizes the change at distance 3 when considering the changes over the weighted 

network: the perturbation of Asn239 modifies the weighed degree of His179, which modifies the weighted 

degree of Pro177, which modifies the weighted and unweighted degrees of Gly245. The double mutation 

creates a chemical link between Asn239 and Gly245 showing that the two sites of perturbation 

communicate. The weighted graph provides a more reliable geometrical description of the amino acids 

which is important to design new paths. A P2P mechanism is one possible alternative to small world 

communication to explain how a local perturbation can produce global changes. 

 

Mechanisms underlying local to global changes: quality versus quantity 
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Very recently financial networks were found to be weaken more by influences between financial 

partners than by their degree of connectivity [52]. Feedback centrality, which identifies nodes whose 

perturbation affects not only their direct contacts (distance 1) but also the direct contacts of their direct 

contacts (distance 2, etc.) in a domino effect, was measured. Basically, the risk of failures depended on 

the sphere of influence of the nodes (how far the damages spread in the network) and not of their 

degrees [52,53]. This illustrates how the total amount of change (global change) upon a perturbation 

does not solely relate to the quantity of links of the disturbed node. Along these lines, we have found 

that the in silico mutation of the highest degree node in the network of the cholera toxin B pentamer 

interface had a lower impact on the stability of the interface than the mutation of a node of degree one 

[54]. Moreover, the changes observed for the N239Y p53 mutant resemble a domino effect. We have 

observed a similar domino effect upon the single mutation G334V in the p53 tetramerization domain 

[19].  

Influence effects are referred to as cascades and are used to measure epidemic risks [55,56]. There are 

many flow algorithms, feedback centrality and influential algorithms worth considering. For example, 

the Dijkstra algorithm applied on P2P networks allows one to calculate best itineraries or fastest 

internet routing [57,58]. Influential algorithms are developed essentially to analyze social behavior from 

human decisions to flocks of birds, but may also apply to protein-protein interaction networks [59]. In 

particular Hegselmann-Krause’s and French-de Groot’s models look at how a node is influenced by and 

influences its direct contacts [60-63]. 

Besides influences, what other changes can be expected upon an amino acid mutation? Altogether, a 

mutation can either add or remove nodes/links, or conserve the wild-type connectivity. The real 

problem is to anticipate the consequences of the local change. Again, this question arises in other real 

networks and can be discussed in terms of quality and quantity of changes [64]. In social sciences, it is 

known that weak ties between two nodes of two different communities otherwise unconnected 

introduce a risk in the network (Fig 2A) [65-67]. This is typically a low quantity/high quality change. 

Likewise in proteins, weak ties, if any, can be expected to create at least structural changes upon 

mutation. In fact, the N239Y-G245S p53 mutant is a good example of how little (low quantity) changes 

can prevent large impact. Now the high quantity of links also creates risk, such as for the p53 

tetramerization and the financial networks, whose high connectivity promotes fragility because of the 

domino effect [19] [52]. In contrast, amino acid networks of protein interfaces, issued from “healthy” 

proteins (Box 1) are disconnected/sparse [19]. 
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This warns us that there is no stricto sensu correlation between connectivity, density of contacts and 

robustness or lack of robustness. The consequences of changes depend on whether they provide or 

remove ‘back-up’ interactions [50,68].  

The complex relationship between connectivity and robustness/sensitivity to changes, observed in 

networks, is mirrored in proteins [69]. Schematically, proteins with high (globular) and low (disordered) 

density of contacts are stable enough to exist.  

Conclusion: A combination of network measures is essential to capture changes underlying local to 

global changes in proteins: local measures on the nodes and links as well as influential/flow measures 

along the paths of communication (architecture and diffusion). Complex networks are often systems 

whose properties are not just the sum of the properties of their individual components they are 

nonlinear systems. This also applies to amino acid networks and proteins. This concept is explored 

further in the review [70] on the complexity of systemic risk in networks. 
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Box 1. Definitions 

 
Protein: a chain of amino acids covalently linked, whose unique sequence encodes the shape and the 

function of the protein. Amino acids are also called residues. 

Protein folding: acquisition of the protein’s three-dimensional shape, also called fold or conformation. 

Network: a network represents interactions between elements. The elements of the network are the 

nodes, also called vertices, and the interactions between two distinct nodes are the links, also called 

edges. A network is particularly well suited to model complex systems in which many elements interact 

with many others. 

Amino acid networks: network built using amino acid as nodes and interactions between amino acid as 

links. 

Robustness: the property of a system allowing it to maintain its functions despite external and internal 

perturbations. 

Local perturbation: the change of a single node, e.g. a single amino acid mutation. 

Degree: the number of links of a node. 

Path length: the number of links, called distance, one passes through travelling from one node to 

another. 

Cascade effect: an avalanche or a domino effect, in which one change produces other changes which in 

turn produce other changes etc. 

Healthy proteins: proteins which do not undergo shape or functional changes that lead to a disease or 

reduced lifespan.  
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Figure legend 

Figure 1. Complexity and dynamics of proteins. To cope with local perturbations, proteins rely on 

dynamics as outlined here.  For the sake of clarity, a protein is schematized by simple shapes made of 

balls and sticks representing its amino acids and their links, respectively. In the central black box, the 

protein has a shape S1 suitable to a function F1. The local perturbation 1 (p1, blue lightning) on one 

amino acid modifies the shape S1 enough to prevent the protein from functioning (blue arrows). Such a 

global change is lethal and underlies the development of some diseases. The local perturbation 2 (p2, 

red lightning) on an amino acid at a different position, also modifies the shape S1 but in such a way that 

the protein maintains its function (red arrows). This is referred to as robustness to change, the local 

perturbation p2 being neutral. The combination of the two local perturbations p1 and p2 creates a 

global change (purple arrows) that is a solution of the protein to adapt either by taking a new function F2 

or by combining two functions F1 and F2 or by rescuing the function F1 and preventing p1 lethal changes. 

The mechanism common to these dynamics is that a global change is triggered by a local perturbation. 

 

Figure 2. Network architecture. A. Theoretical networks. The nodes and links are represented by circles 

and lines, respectively. Left panel. Network with high degree hubs connected to one another 

(assortative network). Red circles are hubs and dotted lines are weak ties. The lightning represents 

perturbation. The potential paths of changes subsequent to the perturbation are indicated by black and 

green arrows. The spread of perturbation to a node of degree one (green arrow) is weaker than to a hub 

(black arrows) because the hub has many links. Right panel. Network with moderate degree hubs 

connected to lower degree nodes (dissassortativity). Paths of changes upon local perturbation appear 

less obvious in such architecture. B. Computer networks. Schematics illustrate a served based network 

(left panel) and a Peer-to-Peer network (right panel). In the former, the communications between 

computers rely on a “hub” central computer. C. Real networks: from local to global changes in the 

tumor suppressor p53. The wild-type tumor suppressor p53 and two mutated versions (N239Y and 

N239Y-G245S) are taken as examples to illustrate the mechanism of changes upon a local perturbation. 

The top panels represent a close up of the X-ray crystallography structures of the proteins, focusing 

around the site of the mutations. The wild-type (yellow), N239Y (blue) and N239Y-G245S (green) PDBs 

are 1TSR, 1UOL and 2J1Y, respectively. The side chains of the amino acids are shown with their type and 

position along the protein sequence. Atomic distances are indicated in Angström and highlighted by 

black lines. Continuous and dotted lines are for distances below and above 5 Å, respectively. Changes in 
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the atomic distances upon mutation are indicated in red as well as the mutation. The middle panels are 

unweighted network representations of the respective atomic close ups of wild-type, N239Y and N239Y-

G245S. Nodes and links are represented by black dots and lines. A link between two amino acids 

signifies that the amino acids have at least one pair of atoms at a distance below 5 Å (unweighted 

graph). Residues Asn239, His179, Pro177 and Gly245 are nodes i, j, k and l, respectively.  The bottom panels 

are weighted network representations of the respective atomic close ups of wild-type, N239Y and 

N239Y-G245S.  In the weighted networks, the number of links between two amino acids equals the 

number of pairs of atoms at distances below 5 Å they share. The weight is indicated on the link. The 

local perturbation (i.e. mutation) is illustrated by a lightning bolt. 

 

Figure 3. Double site perturbations and protein adaptability. One possible solution to adaptability 

through the combination of two local perturbations is explained by a straightforward example, using a 

simple rigid shape maintained by a set of links (sticks) between atoms (balls). A first local perturbation 

on one site (lightning) removes one link (red stick). The shape relaxes; the protein becomes dynamic and 

flexible, able to explore new shapes. A second local perturbation on a distinct site introduces a new link 

(red stick), and yields a new rigid shape. This mechanism applies as much to more complex 

shape/system (e.g. snow coat/snow flake). Likewise, if the sticks are secondary structure elements and 

the balls are amino acids. We have used this roadmap to explore the transition from a fully folded 

protein to a protein fiber [71]. 
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