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Abstract

A polyomino P is called 2-convex if for every two cells belonging to P , there ex-
ists a monotone path included in P with at most two changes of direction. This
paper studies the tomographical aspects of 2-convex polyominoes from their hori-
zontal and vertical projections and gives an algorithm that reconstructs all 2-convex
polyominoes in polynomial time.

1 Introduction

There are many notions of discrete convexity of polyominoes (namely hv-
convex [2], Q-convex [3], L-convex polyominoes [8]) and each one leads to
interesting studies. One natural notion of convexity on the discrete plane is
the class of hv-convex polyominoes, that is polyominoes with consecutive cells
in rows and columns. Following the works of Barcucci et al. [2] we are able to
reconstruct polyominoes that are hv-convex according to their horizontal and
vertical projections. In addition to that, for an hv-convex polyomino P every
pair of cells of P can be reached using a path included in P with only two
kinds of unit steps (such a path is called monotone). A polyomino is called k-
convex if for every two cells we find a monotone path with at most k changes of
direction. Obviously a k-convex polyomino is an hv-convex polyomino. Thus,
the families of k-convex polyominoes for k ∈ N forms a hierarchy of hv-convex
polyominoes. When the value of k is equal to 1 we have the so called L-convex
polyominoes, where this terminology is motivated by the L-shape of the path
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that connects any two of its cells. This notion of L-convex polyominoes has
been considered by several points of view. In [5,4] combinatorial aspects of
L-convex polyominoes are analyzed, giving the enumeration according to the
semi-perimeter and the area. From a tomographical point of view, in [7] it
is given an algorithm that reconstructs an L-convex polyomino from the set
of its maximal L-polyominoes, while in [8] the same problem is solved from
the size of some special paths, called bordered L-paths. The general recon-
struction problem from two projections together with its related uniqueness
problem have finally been solved in [6]. A different approach requires the class
of 2-convex polyominoes since it is geometrically more complex to character-
ize. Duchi et al. enumerate in [11] this class using a purely analytical fashion,
but their enumeration technique gives no idea for the tomographical recon-
struction.

In this paper we furnish an algorithm to reconstruct the 2-convex polyomi-
noes from two projections. We proceed by splitting the class of 2-convex poly-
ominoes into three subclasses, up to symmetries, with respect to the mutual
positions of the feet of their elements. Two of them have a simple geometrical
characterization, and they can be reconstructed by standard algorithms, while
the third one, say =, that includes all those polyominoes that are 2-convex
but not 1-convex, represents the core of the problem. Our approach resembles
that in [9], i.e. first we characterize the class = in a purely geometrical fashion,
then we express this characterization by means of Horn clauses which admit
a quick valuation process [1].

2 Definition and notation

A planar discrete set is a finite subset of the integer lattice N2 defined up
to translations. A discrete set S can be represented either by a set of cells,
i.e. unitary squares in the cartesian plane, or by a binary matrix A = (ai,j),
whose dimensions are those of the minimal bounding rectangle of the set,
and such that each 1 represents the presence of a point of the subset in the
correspondent position, see Fig. 1. By convention, the positions of the points
of the set S inherit the standard notation for the elements of a matrix (i.e.
the point in position (1, 1) of S is in the upper left position of the minimal
bounding rectangle of S).

To each discrete set S, represented by a m × n binary matrix, we associate
two integer vectors H = (h1, ..., hm) and V = (v1, ..., vn) such that for each
1 ≤ i ≤ m, 1 ≤ j ≤ n, hi and vj are the number of cells of S (elements 1 of
the matrix) which lie on row i and column j, respectively. The vectors H and
V are called the horizontal and vertical projections of S, respectively. As an
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example, the projections of the discrete set in Fig. 1 are

H = (3, 2, 3, 1, 1, 1, 3) and V = (3, 3, 1, 2, 2, 3).

1

1 1 1 0 0 0
1 0 0 0 01

1110 0 0
0 0 0 0 0 1

10 0 0 0 0
0 0 0 0 0

000
1

1 1

Fig. 1. A finite set of N× N, and its representation in terms of a set of cells and of
a binary matrix.

Classes of polyominoes

A planar discrete set whose cells are connected is called a polyomino. A poly-
omino is horizontally-convex [resp. vertically-convex ] if its cells lying on each
column [resp. row] are connected, while it is hv-convex (simply convex), if it
is both horizontally and vertically convex, see Fig. 2.

(a) (d)(c)(b)

Fig. 2. A polyomino (a), a vertically convex polyomino (b), a convex polyomino (c),
and an h-centered polyomino (d).

In each convex polyomino P , we can define the N-foot to be the set of cells of
P that lie in its first row. Note that, by convexity, the cells of the N -foot form
a bar, and let us indicate by (1,mN) and (1,MN) its two extremal points, and
sometimes, by abuse of notation, simply mN and MN .

Analogously, we define the S-foot, W-foot, and E-foot of P , and their extremal
points, as depicted in Fig. 4.

We notice that the border of P delimits four disjoint (possibly void) regions in
its minimal bounding rectangle, that lie outside P . Following [9], we indicate
these four regions with the letters A, B, C, and D, arranged as shown in
Fig. 4.
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Finally, a convex polyomino P is said to be horizontally-centered (briefly h-
centered) [resp. vertically-centered (briefly v-centered)], if at least one cell of
its W -foot and one cell of its E-foot [resp. N -foot and S-foot] lie the same
row [resp. same column], as in Fig. 2, (d).

Now, we define the problem we are going to study

Reconstruction (H, V, C)

Input: two integer vectors H and V , and a class of discrete sets C.
Task: reconstruct an element of C whose horizontal and vertical projections
are H and V , respectively, if it exists, otherwise give FAILURE.

A hierarchy on convex polyominoes

For any two cells a and b in a polyomino P , a path
∏

ab, from a to b, is a sequence
(i1, j1), (i2, j2), ..., (ir, jr) of adjacent disjoint cells of P , with a = (i1, j1), and
b = (ir, jr). For each 1 ≤ k ≤ r − 1, we say that the two consecutive cells
(ik, jk), (ik+1, jk+1) form

• an east step if ik+1 = ik and jk+1 = jk + 1;
• a north step if ik+1 = ik − 1 and jk+1 = jk;
• a west step if ik+1 = ik and jk+1 = jk − 1;
• a south step if ik+1 = ik + 1 and jk+1 = jk.

We define a path to be monotone if it is entirely made of only two of the four
types of steps defined above.

Fig. 3. The convex polyomino on the left is 2-convex, while the one on the right is
L-convex. For each polyomino, two cells and a monotone path connecting them are
shown.

Proposition 1 (Castiglione, Restivo [7]) A polyomino P is convex if and
only if every pair of cells is connected by a monotone path.

Let us consider a polyomino P . A path in P has a change of direction in the
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cell (ik, jk), for 2 ≤ k ≤ r − 1, if

ik 6= ik−1 ⇐⇒ jk+1 6= jk.

A convex polyomino such that every pair of its cells can be connected by a
monotone path with at most k changes of direction is called k-convex.

In [7], it is proposed a hierarchy on convex polyominoes based on the number of
changes of direction in the paths connecting any two cells of the polyomino. For
k = 1, we have the first level of hierarchy, i.e. the class of 1-convex polyominoes,
also denoted L-convex polyominoes for the typical shape of each path having
at most one single change of direction. Tomographical aspects of L-convex
polyominoes have been deeply investigated in these last few years, in particular
it has been shown that they are characterized both by their horizontal and
vertical projections [6], and by their maximal L shapes [7,8] and, in both cases,
it has been defined a fast algorithm for their reconstruction. These results
have furnished a starting point for the enumeration of the class of L-convex
polyominoes according to their perimeter [5] and, successively, according to
their area [4].

In the present studies, we focus our attention to the next level of the hierar-
chy, i.e. the class of 2-convex polyominoes (see Fig. 3), whose tomographical
properties turn out to be more interesting and substantially harder to be in-
vestigated than those of L-convex polyominoes [7,8].

The following simple property links centered polyominoes and 2-convex poly-
ominoes:

Proposition 2 If P is a centered polyomino (either h-centered or v-centered),
then it is a 2-convex polyomino.

Centered polyominoes are also characterized by means of the shape of the
monotone paths that connect their cells:

Proposition 3 (Duchi et al. [11]) If P is a h-centered polyomino then there
exists a monotone path that connects two of its cells, and that has one of the
form (north)∗(east)∗(north)∗ or (north)∗(west)∗(north)∗ .

In [9], the authors study the problem Reconstruction(H, V, C), with C being
the class of convex polyominoes. In this framework, they also consider centered
polyominoes as special cases, and they define a linear time algorithm to re-
construct them. So, from now on, we concentrate only on convex polyominoes
which are not h-centered or v-centered. In particular, we consider the mutual
positions of the feet of a polyomino, and we define the following classes (see
Fig. 4) that provide a partition of the 2-convex polyominoes: let C2 be the
class of 2-convex polyominoes
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• = = {P ∈ C2 | MN < mS and MW < mE};
• =′ = {P ∈ C2 | MS < mN and ME < mW};
• γ = {P ∈ C | MN < mS and ME < mW};
• γ′ = {P ∈ C | MS < mN and MW < mE}.

The classes γ and γ′ can be reconstructed in a polynomial time from their
horizontal and vertical projections, by means of an algorithm defined in [12].

Furthermore, the classes = and =′ coincide up to horizontal symmetry, so they
are equivalent from a tomographical perspective. In the sequel, we restrict our
investigation only to one of them, i.e. the class =.

W MW

WWm

m N MN

Em

EM

m S MS Sm SM

m E

ME

NMNm

C
D

B

A

D
C

B
A

M

m

Fig. 4. An element of the class = on the left and one of the class γ′ on the right.
The cells of the four feet are highlighted in both the polyominoes.

3 Further properties of 2-convex polyominoes

Let P be an element of = and let Bor′(P ) = {(i1, j1), . . . , (ir, jr)} be the set of
cells of P such that (i1, j1) = (m,MS), (ir, jr) = (ME, n), and for 2 ≤ k ≤ r−1,
let (ik, jk) be a cell of the border of P that delimits the zone D of the exterior
of P , and sharing one side with the cells (ik−1, jk−1) and (ik+1, jk+1).

Now let R = {R1, . . . , Rr} be the set of maximal rectangles entirely contained
in P , and whose lower rightmost cells correspond to the elements of Bor′(P ).
Let the upper rightmost cells of R1, . . . , Rr be i1, . . . , ir, respectively. Figure 5,
(a) shows a polyomino in =, and the cell d3 that belongs to Bor′; the rectangle
R3, and its upper rightmost cell i3 are also highlighted.

We define R′ = {R′
1, . . . , R

′
r} to be the set of rectangles whose lower right-

most cells are i1, . . . , ir, respectively, and whose bases and heights extend till
reaching the border of P . For each 1 ≤ k ≤ r, we indicate with ck, bk, and ak

the lower leftmost cell, the upper rightmost cell, and the upper leftmost cell
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Fig. 5. In (a), a convex polyomino where the south− east corners and the rectangle
R3 corresponding to the corner d3 are shown. In (b), for the same polyomino, they
are highlighted the interior points i1, . . . , i5, and the rectangles R′

3 and F3.

of R′
k, respectively, as depicted in Fig. 4, (b). Note that, even in a 2-convex

polyomino, each rectangle R′
k has not to be entirely contained in P . Finally,

we indicate with F1, . . . , Fk the rectangles having a1, . . . , ak as lower leftmost
cells, and that extend till reaching the sides of the minimal bounding rect-
angle containing P . In Fig. 5, (b) one of these rectangles, i.e. that related to
the cell d3, is also highlighted. We indicate the set of cells F (P ) =

⋃r
k=1 Fk as

forbidden set .

Proposition 1 A convex polyomino P is 2-convex if and only if the set F (P )
does not contain any cell of P .

Proof. (⇒) Let us proceed by contradiction assuming that P is a 2-convex
polyomino, and (i, j) is a cell in P ∩ F (P ). By definition there exists at least
one rectangle Fk that contain (i, j), with 1 ≤ k ≤ r, and r being the number
of elements of Bor′(P ).

By definition of the rectangles Rk and R′
k, there is no monotone path entirely

contained in P , having two changes of directions at most, and connecting (i, j)
to (ik, jk), against the assumption on P .

(⇐) Let P be a convex polyomino such that MN < mS and MW < mE, and
having no cells in F (P ). We consider two of its cells (i1, j1) and (i2, j2), and
we show that there exists a monotone path connecting them and having at
most two changes of direction. Some cases arise:

i) the two cells belong to two elements of F . It is immediate to check that
there exists a monotone path connecting them, and having at most two
changes of direction;

ii) at least one of the two cells, say (i1, j1) belongs to an element of F , say
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Fk. By definition, from each cell of Fk one can reach the cell ik with two
monotone paths having at most one change of direction. From the point
ik, one of these monotone paths can continue till reaching all the cells of P
except those in Fk with, at most, a further change of direction. By hypothesis
(i2, j2) 6∈ Fk, and so the thesis;

iii) none of the two cells belong to an element of R. Let us consider a rectangle
Rk ∈ R; since the two cells do not belong to Fk by hypothesis, so they can
be reached from ik with monotone paths having at most one change of
direction, furthermore these paths either intersect or at least one of them
runs along one side of Rk. In both cases, a monotone path connecting the
two starting cells and having at most one change of direction can be easily
computed. 2

Proposition 2 Let P be a convex polyomino and (ik, jk) and (ik+1, jk+1) be
two cells in Bor′(P ). If ik = ik+1 [resp. jk = jk+1], then Fk ⊆ Fk+1 [resp.
Fk+1 ⊆ Fk].

The proof directly follows from the definitions of Fk and Fk+1.

Proposition 2 allows us to check the 2-convexity of a polyomino using only few
cells of the set Bor′(P ), i.e. those cells that are also corners of the polyomino
(see Fig. 5, (a), cells d1, . . . , d5). We indicate the set of all these cells with
Bor(P ).

4 Handling hv-convex polyominoes

In [9], the authors defined a quick method to reconstruct an hv-convex poly-
omino compatible with two vectors H = (h1, . . . , hm) and V = (v1, . . . , vn) of
horizontal and vertical projections, if it exists: their idea relies on possibility
of using a 2−SAT formula (a boolean expression in conjunctive normal form
with at most two literals in each clause) to express the geometrical characteri-
zation of an hv-convex polyomino, i.e. the presence, in its bounding rectangle,
of four disjoint zones, indicated with the letters A, B, C, and D in Fig.4,
whose union forms the exterior of the polyomino, and such that each zone is
hv-convex, and contains exactly one corner of the rectangle or no cells. The
conjunction of the 2− SAT formulas used in [9] is indicated with Fk,l(H,V ).
In the next paragraph, we define more of them in order to strengthen the
constraint till obtaining the 2-convexity.

To make the formulas clear as much as possible to the reader, we point out
that, for each 1 ≤ i ≤ m and 1 ≤ j ≤ n, the variables Ai,j [resp. Bi,j, Ci,j,
and Di,j] determine the zone A [resp. B, C, and D] of the minimal bounding
rectangle of a polyomino P consistent with H and V , i.e. the valuation true
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of Ai,j [resp. Bi,j, Ci,j, and Di,j] means that the cell in position (i, j) belongs
to the zone A [resp. B, C, and D], the valuation false otherwise.

The dependance of Fk,l(H, V ) from the parameters k and l concerns an initial
guess of the positions of a cell in the E-foot and in the W -foot of P . So, in
general, a different formula Fk,l(H, V ) is considered for each of the m2 possible
values of k and l.

The existence of an evaluation for at least one Fk,l(H, V ) directly implies the
existence of an hv-convex polyomino P having H and V as projections and
such that P = A ∪B ∪ C ∪D. The formulas are the following:

Cor =
∧

i,j





Ai,j ⇒ Ai−1,j Bi,j ⇒ Bi−1,j Ci,j ⇒ Ci+1,j Di,j ⇒ Di+1,j

Ai,j ⇒ Ai,j−1 Bi,j ⇒ Bi,j+1 Ci,j ⇒ Ci,j−1 Di,j ⇒ Di,j+1





Dis =
∧

i,j

{
Xi,j ⇒ Ȳi,j : X, Y ∈ {A,B,C,D}, X 6= Y

}

Con =
∧

i,j

{
Ai,j ⇒ D̄i+1,j+1 Bi,j ⇒ C̄i+1,j−1

}

Anc =
{

Āk,1 ∧ B̄k,1 ∧ C̄k,1 ∧ D̄k,1 ∧ Āl,n ∧ B̄l,n ∧ C̄l,n ∧ D̄l,n

}

LBC =
∧

i,j





Ai,j ⇒ C̄i+vj ,j Ai,j ⇒ D̄i+vj ,j

Bi,j ⇒ C̄i+vj ,j Bi,j ⇒ D̄i+vj ,j




∧ ∧

j

{
C̄vj ,j, D̄vj ,j

}

UBR =
∧

j




∧i≤min{k,l}Āi,j ⇒ Bi,j+hi

∧k≤i≤lC̄i,j ⇒ Bi,j+hi

∧l≤i≤kĀi,j ⇒ Di,j+hi
∧max{k,l}≤iC̄i,j ⇒ Di,j+hi





Briefly, each set of clauses defines a specific geometrical property of the poly-
omino P using the four zones A, B, C, and D, in particular

Cor defines the hv-convexity of the four zones outside P and, for each non
void one of them, forces the correspondent corner of the minimal bounding
rectangle to belong to it;

Dis requires the four zones outside P to be disjoint ;
Con asks for the connectedness of P ;
Anc sets the E-foot and the W -foot of P to be anchored at the cells (k, 1)
and (n, l), respectively;

LBC imposes a lower bound to the elements of P for each of its columns,
according with the vertical projections;

UBR imposes an upper bound to the elements of P for each of its rows,
according with the horizontal projections.
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So, Fk,l(H, V ) turns out to be Cor ∧ Dis ∧ Con ∧ Anc ∧ LBC ∧ UBR. All
variables with indices outside the set {1, ..., m} × {1, ..., n} are assumed to
have value 1.

The reconstruction of the polyomino P is summarized by the following

Algorithm1
Input: H ∈ Nm, V ∈ Nn

W.l.o.g assume:∀i : hi ∈ [1, n],∀j : vj ∈ [1,m],
∑

i hi =
∑

j vj and m ≤ n.
For k, l = 1, ..., m do begin
If Fk,l(H, V ) is satisfiable,
then output P = A ∪B ∪ C ∪D and halt
end
output FAILURE

Theorem 1 (Chrobak, Dürr [9]) Fk,l(H,V ) is satisfiable if and only there
exists an hv-convex polyomino P having H and V as horizontal and vertical
projections.

Each formula Fk,l(H, V ) has size O(mn) and can be defined in time O(mn).
Since 2SAT can be solved in linear time [1,?], it holds the following result.

Theorem 2 (Chrobak, Dürr [9]) Algorithm 1 solves the reconstruction prob-
lem for hv-convex polyominoes in time O(mn min(m2, n2)).

5 New clauses to characterize the set =

In the fashion of [9], we give a characterization of the polyominoes in = adding
to some of the clauses for hv-convex polyominoes, new ones to express the
geometrical constraints given in Proposition 1. In addition to that we give our
clauses in the form of negative Horn clauses which are of the following forms:

a) a conjunction of positive variables that implies one positive variable;
b) a conjunction of positive variables that implies one negative variable;
c) one single positive variable;
d) one single negative variable.

We choose to maintain the sets of clauses Cor, Dis, and Con, while we slightly
modify Anc into Anc2 to fix the exact positions of all and four feet of P .
Different sets of clauses are defined for each possible position of mN [resp.
mS, mW , and mE]. The correspondent values of MN = mN + h1 − 1 [resp.
MS = ms + hm − 1, MW = mW + v1 − 1, and ME = mE + vn − 1] are also
computed.
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Anc2 =





A1,mN
∧ AmW ,1 ∧B1,MN

∧BmE ,n∧
CMW ,1 ∧ Cm,mS

∧Dm,MS
∧DME ,n





The clauses in Pos set the positions of the feet in order to avoid polyominoes
that do not belong to =:

Pos =
{

B1,mS
∧ CmE ,1

}

Now we define sets of clauses to determine the zone F (P ) where no elements
of P are admitted, in accordance with what stated in Proposition 1. The first
one is Ext, where we use the new variables ExBi,j [resp. ExCi,j] to identify
the elements of B [resp. C] in position (i, j) that are immediate external to
the polyomino P :

Ext =





∧i,j ExAi,j ⇒ Ai,j ExAi,j ⇒ Bi,j+hi+1 (Ai,j ∧Bi,j+hi+1) ⇒ ExAi,j

∧i,MN<j<mS
ExBi,j ⇒ Bi,j ExBi,j ⇒ Ci+vj+1,j (Bi,j ∧ Ci+vj+1,j) ⇒ ExBi,j

∧i,mS≤j≤MS
ExBm−vi,j

∧i,j>MS
ExBi,j ⇒ Bi,j ExBi,j ⇒ Di+vj+1,j (Bi,j ∧Di+vj+1,j) ⇒ ExBi,j

∧MW <i<mE ,j ExCi,j ⇒ Ci,j ExCi,j ⇒ Bi,j+hi+1 (Ci,j ∧Bi,j+hi+1) ⇒ ExCi,j

∧mE≤i≤ME ,j ExCi,n−hj

∧i>ME
ExCi,j ⇒ Ci,j ExCi,j ⇒ Di,j+hi+1 (Ci,j ∧Di,j+hi+1) ⇒ ExCi,j





Then, we identify the elements of Bor(P ), i.e. those cells of Bor′(P ) that
are corners, and whose contribution is essential to identify the forbidden re-
gion F (P ) as stated in Proposition 2; here a new set of variables Bori,j is
introduced.

Bor =
∧

i,j





Bori,j ⇒ Ci,j−hi
Bori,j ⇒ Di,j+1 Bori,j ⇒ Di+1,j

(Ci,j−hi
∧Di,j+1 ∧Di+1,j) ⇒ Bori,j





The clauses that assure the 2-convexity of the polyomino P can now be stated.

2-conv =
∧

i,j

{ ∧
s<mW ,t<mN

(Bori,j ∧ ExBs,j−hi+1 ∧ ExCi−vj+1,t) ⇒ As,t

}

Note that, for each element d in Bori,j, we exactly know the position of the
correspondent cell i, i.e. (i − vj + 1, j − hi + 1), while we do not for the
correspondent b and c, so we need to check all their possible positions using
the parameters l and k. Imposing the presence in position (l, k) of the zone A
prevents any cell of P from being in the forbidden rectangle related to d.
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Furthermore, the exact knowledge of the positions of the four feet of P allows
us to impose in a slightly different way the upper bound [resp. lower bound]
to the number of cells for each column [resp. row] of P according to its projec-
tions. For sake of clarity, we repeat in UBR2 some clauses already stated in
Ext, and that are relevant for setting the lower bound to the number of cells
on each row of P .

LBC2 =
∧

i





∧j<mN
Ai,j ⇒ Ci+vj ,j ∧mN≤j≤MN

Cvj+1,j

∧MN<j<mS
Bi,j ⇒ Ci+vj ,j ∧mS≤j≤MS

Bm−vj ,j

∧j>MS
Bi,j ⇒ Di+vj ,j




∧ ∧

j

{
Cvj ,j Dvj ,j

}

UBR2 =
∧

j





∧i<mW
ExAi,j ⇒ Bi,j+hi+1 ∧mW≤i≤MW

Bi,hi+1

∧MW <i<mE
ExCi,j ⇒ Bi,j+hi+1 ∧mE≤i≤ME

Ci,n−hi

∧i>ME
ExCi,j ⇒ Di,j+hi+1





In order to reconstruct 2-convex polyominoes, we apply Algorithm 1 to the
class =(H, V ), defined as follows:

=(H,V ) = Cor∧Dis∧Con∧Anc2∧Pos∧Ext∧Bor∧2-conv∧LBC2∧UBR2.

Theorem 3 =(H, V ) is satisfiable if and only if there exists a polyomino P
in = having H and V as horizontal and vertical projections, respectively.

Proof. (⇒) let us consider the set of cells P = A ∪B ∪ C ∪D. By Theorem 1,
P is a convex polyomino. By definition, each variable Bori,j involved in the
clauses Bor has value 1 if and only if there is a cell d of Bor(P ) in position
(i, j). Since the polyomino belongs to the class =, for each d ∈ Bor(P ) in
position (i, j), there exist two indexes s < mW and t < mN such that the
variables ExtBs,j−hi+1 and ExtCi−vj+1,t have value 1 (clauses Ext); such two
variables correspond to the elements b and c related to d. Finally the positions
of b and c determine the position (s, t) of a, and so the clauses 2-conv impose
the constraint for the forbidden zone related to a, as required by the charac-
terization of 2-convex polyominoes given in Proposition 1. The clauses LBC2

and UBR2 get into the 2-convexity context those in LBC and UBR.

(⇐) Let P be a 2-convex polyomino in =. By Theorem 1 all the clauses for
convex polyominoes are satisfied by P , and the same holds for the sets Anc2,
LBC2 and UBR2. The elements of P in Bor(P ) allow the correspondent
variables Bori,j to have value 1. By the characterization given in Proposition 1,
for each element dk in Bor(P ) there exist two indexes s and t that determine
the cells bk, ck and ak, and consequently the forbidden zone Fk, completely
contained in the zone A, so also the related clauses in Ext and 2-conv are
satisfied. 2
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Theorem 4 If there exists a valuation for the formula =(H,V ), then it can
be computed in O(m4n4) time.

We compute the complexity of finding a valuation for =(H, V ) starting from
that of Fk,l(H, V ) for convex polyominoes, i.e. O(m n min{m2, n2}). Since in
=(H,V ) we impose the exact knowledge of all and four the feet of the poly-
omino, the complexity increases to O(m3n3), then we consider all the possible
row and column indexes s and t when imposing 2-conv, reaching the com-
plexity of O(m4n4). Since the clauses are on negative Horn-SAT forms and
Horn-SAT is a tractable problem with linear complexity in the size of the
formula [10], the final complexity remains O(m4n4).

6 Final comments

The characterization obtained for 2-convex polyominoes in Proposition 1 can
be generalized to k-convex ones: in particular the idea of climbing up along
a k-convex polyomino using k maximal internal rectangles, till reaching an
extremal forbidden zone seems exactly what needed to this purpose. So, for
each k, we can translate the k-convexity constraint into Horn clauses, and
then solve the related reconstruction problem from two projections.

Obviously the number of such clauses (and so the computational complexity),
increases till becoming exponential in the limit. However such an approach
turns out to be useful once we have set un upper bound to the class of con-
vexity to which at least one solution of the reconstruction problem belongs:
in particular, given a couple of projections, we can use the algorithm in [9]
to find a convex polyomino compatible with them, then we compute its level
of convexity, say k, and finally run the reconstruction algorithm for k′-convex
polyominoes, for each k′ < k. This procedure allows us to define the concept
of convexity level of a couple of projections.
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